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Abstract In this paper, we study parameterized algorithms for the SET SPLITTING

problem, for both weighted and unweighted versions. First, we develop a new and
effective technique based on a probabilistic method that allows us to develop a sim-
pler and more efficient deterministic kernelization algorithm for the unweighted SET

SPLITTING problem. We then propose a randomized algorithm for the weighted SET

SPLITTING problem that is based on a new subset partition technique and has its
running time bounded by O∗(2k), which is significantly better than that of the previ-
ous best deterministic algorithm (which only works for the simpler unweighted SET

SPLITTING problem) of running time O∗(2.65k). We also show that our algorithm
can be de-randomized, which leads to a deterministic parameterized algorithm of
running time O∗(4k) for the weighted SET SPLITTING problem and gives the first
proof that the problem is fixed-parameter tractable.

Keywords Set splitting · Randomized algorithm · Derandomization · Parametrized
algorithm

1 Introduction

Let X be a set. A partition of X is a pair of subsets (X1,X2) of X such that X1 ∪X2 =
X and X1 ∩ X2 = ∅. We say that a subset S of X is split by the partition (X1,X2) of
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X if S ∩ X1 �= ∅ and S ∩ X2 �= ∅. The SET SPLITTING problem is defined as follows:
given a collection F of subsets of a ground set X, construct a partition of X that
maximizes the number of split subsets in F .

A more generalized version of the SET SPLITTING problem is the weighted SET

SPLITTING problem, in which each subset in the collection F is associated with a
weight that is a real number, and the objective is to construct a partition of the ground
set that maximizes the sum of the weights of the split subsets.

The SET SPLITTING problem is an important NP-hard problem [11]. A number
of well-known NP-complete problems are related to the SET SPLITTING problem,
including the HITTING SET problem that is to find a small subset of the ground X

that intersects all subsets in a given collection F , and the SET PACKING problem that
is to find a large sub-collection F ′ of a given collection F of subsets such that the
subsets in F ′ are all pairwise disjoint.

In terms of approximability, the SET SPLITTING problem is APX-complete [3].
Andersson and Engebretsen [2] gave a polynomial time approximation algorithm for
the problem that has an approximation ratio bounded by 0.724. Zhang and Ling [17]
presented an improved polynomial time approximation algorithm of approximation
ratio 0.7499 for the problem. Better polynomial time approximation algorithms can
be achieved if we further restrict the number of elements in each subset in the input
[13, 17–19].

On certain applications, such as the analysis of micro-array data, people have stud-
ied the parameterized version of the SET SPLITTING problem, by associating each
instance of the problem with a parameter k, which is in general a small positive inte-
ger [7]. The parameterized unweighted SET SPLITTING problem is defined as follows:
given a triple (X, F , k), where X is a finite ground set, F is a collection of subsets of
the ground set X, and k is the parameter that is a non-negative integer, decide if there
is a partition of the ground set X that splits at lease k subsets in F .

In this paper, we are mainly concerned with parameterized algorithms [9] for the
parameterized SET SPLITTING problem, where the algorithms run in time f (k)nO(1),
with f (k) being a function that only depends on the parameter k. In particular, for
small values of the parameter k, such an algorithm for the parameterized SET SPLIT-
TING problem will become efficient.1

The parameterized unweighted SET SPLITTING problem has been studied in the
literature. Dehne, Fellows, and Rosamond [7] were the first to study the problem
and provided a parameterized algorithm of running time O∗(72k) for the problem.2

In the same paper, the authors also proved that the parameterized unweighted SET

SPLITTING problem has a kernel of fewer than 2k subsets: that is, there is a polyno-
mial time algorithm that on a given instance (X, F , k) of parameterized unweighted
SET SPLITTING, produces another instance (X′, F ′, k′) for the problem such that
|X′| ≤ 4k2, |F ′| < 2k, k′ ≤ k, and that the set X has a partition that splits k subsets

1According to Downey and Fellows [9], a parameterized problem is fixed parameter tractable if it can be

solved in time f (k)nO(1) , where f is a function depending on the parameter k but independent of the
input size n.
2Following the recent convention, by the notation O∗(ck), where c > 1 is a constant, we refer to a function

of order O(cknO(1)g(k)), where g(k) = co(k).
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in the collection F if and only if the set X′ has a partition that splits k′ subsets in
the collection F ′. Later, Dehne, Fellows, Rosamond, and Shaw [8] developed an im-
proved algorithm of running time O∗(8k) for the problem. The improved algorithm
was obtained by combining the recently developed techniques of greedy localization
and modeled crown reduction in the study of parameterized algorithms. The current
best algorithm for the parameterized unweighted SET SPLITTING problem is devel-
oped by Lokshtanov and Sloper [15], where they used Chen and Kanj’s result for the
MAX-SAT problem [4] and reached a time complexity of O∗(2.65k).

A natural generalization of the parameterized unweighted SET SPLITTING prob-
lem is the parameterized weighted SET SPLITTING problem defined as follows: given
a triple (X, F , k), where X is a finite ground set, F is a collection of subsets of the
ground set X, in which each subset is assigned a weight (that is a real number), and
k is the parameter that is a non-negative integer, either construct a partition of X that
maximizes the weighted sum of k split subsets in F , or report that no partition of
X can split k subsets in F . Note that there is an essential difference between para-
meterized unweighted SET SPLITTING and parameterized weighted SET SPLITTING.
Parameterized unweighted SET SPLITTING is a decision problem that only requires
a yes/no answer, while parameterized weighted SET SPLITTING is an optimization
problem that, in case a partition of the ground set X splitting k subsets in F exists,
requires to construct such a partition that maximizes the weighted sum of the split
subsets.

No parameterized algorithms of running time of the form f (k)nO(1) have been
known for the parameterized weighted SET SPLITTING problem. In fact, none of the
techniques developed previously for the parameterized unweighted SET SPLITTING

problem, such as those in [7, 8, 15], seems to be extendable to the weighted case.
In this paper, we develop new techniques in dealing with the SET SPLITTING prob-

lems for both weighted and unweighted cases. First, we develop a new and effective
technique based on a probabilistic method that allows us to develop a deterministic
kernelization algorithm for the parameterized unweighted SET SPLITTING problem.
The new kernelization algorithm is simpler and more efficient compared with the pre-
vious kernelization algorithm given in [7]. We then propose a randomized algorithm
for the parameterized weighted SET SPLITTING problem (thus, also for the parame-
terized unweighted SET SPLITTING problem) that is based on a new subset partition
technique and has its running time bounded by O∗(2k). The running time of our ran-
domized algorithm is significantly better than that of the previous best deterministic
algorithm of running time O∗(2.65k) given in [15], which only works for the (sim-
pler) parameterized unweighted SET SPLITTING problem. We also show that, using
the structure of (n, k)-universal sets developed by Naor, Schulman, and Srinivasan
[16], we can de-randomize our randomized algorithm, which leads to a parameter-
ized algorithm of running time O∗(4k) for the weighted SET SPLITTING problem
and gives the first proof that the problem is fixed parameter tractable.

A preliminary version of the current paper appeared in the proceedings of CO-
COON’07 [5], where, because of the page limit, some of the details were omitted.
The current paper is a careful revision of [5] with all necessary details provided.
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2 A New Kernelization Algorithm for SET SPLITTING

Since we will be only considering the parameterized versions of the SET SPLITTING

problems, we will drop the word “parameterized unweighted” when we refer to the
parameterized unweighted SET SPLITTING problem and drop the word “parameter-
ized” when we refer to the parameterized weighted SET SPLITTING problem.

In this section, we focus on the SET SPLITTING problem. By a kernelization algo-
rithm for SET SPLITTING, we mean a polynomial time algorithm that, on an instance
(X, F , k) of SET SPLITTING, produces another instance (X′, F ′, k′) for the problem
such that k′ ≤ k and the size of the instance (X′, F ′, k′) only depends on the para-
meter k. The instance (X′, F ′, k′) will be called a kernel for the instance (X, F , k).
Dehne, Fellows, and Rosamond [7] developed a kernelization algorithm by which the
kernel (X′, F ′, k′) satisfies the conditions |F ′| < 2k and that each subset in F ′ has at
most 2k elements. Lokshtanov and Sloper [15] used the crown decomposition method
to obtain a kernel such that both |F ′| and |X′| are less than 2k. We introduce a new
method to find the kernel for the SET SPLITTING problem. What is interesting in our
method is that we use a probabilistic method to derive a deterministic kernelization
algorithm. In particular, our method is simpler, has lower time complexity, and can
also obtain a better kernel in term of the number of subsets in F ′ if there are subsets
in F ′ whose size is larger than 2.

Lemma 2.1 Given an instance (X, F , k) of the SET SPLITTING problem, let m1 be
the number of subsets in F that have only one element. If |F | − m1 ≥ 2k, then a
partition of X exists that splits at least k subsets in F .

Proof For each subset S ∈ F , if S has at least two elements, we pick any two elements
from S. Let V be the set of all these elements picked from the subsets in F that have
more than one element. Note that for two subsets S1 and S2 in F that have more than
one element, the two elements in S1 and the two elements in S2 may not be disjoint.

Suppose |V | = t . We randomly partition V into two subsets Vl and Vr , such that
|Vl | = �t/2�, |Vr | = t −|Vl |, i.e. we randomly pick �t/2� elements of V and put them
in Vl and let the remaining t − �t/2� elements of V be in Vr . Thus, for any subset S

in F :

Pr(S is split)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

≥ 2( t−2
�t/2�−1)

( t
�t/2�)

= 2�t/2�(t−�t/2�)
t (t−1)

> 1
2 ,

if S has more than one element

= 0, otherwise.

If we let:

XS =
{

1, if S is split,

0, otherwise,

then the expectation of the number of split subsets in F satisfies

E

(∑

S∈F
XS

)

≥ 1

2
(|F | − m1).
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Therefore, if |F | − m1 ≥ 2k, then the expectation of the number of split subsets in F
is larger than or equal to k. That is, there must exist a partition of the ground set X

such that the number of split subsets in F is at least k. This completes the proof of
the lemma. �

The result of Lemma 2.1 was first observed by Lokshtanov and Sloper, who pre-
sented a proof in [15]. Our proof above is very different from that given in [15] and
takes a probabilistic approach. Furthermore this new approach can lead to a better
result for the kernelization when many subsets in F have more than 2 elements, as
described in Lemma 2.4.

The following lemma shows that we can directly include subsets of at least k

elements in our split subsets while we are solving the SET SPLITTING problem.

Lemma 2.2 Let (X, F , k) be an instance of the SET SPLITTING problem, and let S

be a subset in F that contains at least k elements. Then there is a partition of X that
splits k subsets in F if and only if there is a partition of X that splits k − 1 subsets in
F − {S}.

Proof Suppose that there is a partition (Xl,Xr) of the ground set X that splits k

subsets in F . Then it is obvious that (Xl,Xr) splits (at least) k−1 subsets in F −{S}.
On the other hand, suppose that there is a partition (Xl,Xr) of the ground set X

that splits k − 1 subsets S1, . . . , Sk−1 in F − {S}. Let li , ri ∈ Si , li ∈ Xl , and ri ∈ Xr ,
for all 1 ≤ i ≤ k − 1. Since S has at least k elements, there are at least two different
elements l and r in S such that l �∈ {r1, . . . , rk−1} and r �∈ {l1, . . . , lk−1}. Therefore,
if we modify the partition (Xl,Xr) to enforce l in Xl and r in Xr (note that this
modification still keeps li in Xl and ri in Xr for all 1 ≤ i ≤ k − 1), then the new
partition of X splits the subset S, as well as the k−1 subsets S1, . . . , Sk−1 in F −{S}.
In consequence, the new partition of the ground set X splits (at least) k subsets in the
collection F . �

Now we are ready to state our first kernelization result. For a given instance
(X, F , k) of the SET SPLITTING problem, consider the following reduction rules.

Rule R1. If a subset S in F has only one element, remove S from F .
Rule R2. If a subset S in F has at lease k elements, remove S from F and decrease

k by 1.

The correctness of Rule R1 is obvious: a subset of a single element can never be
split by any partition of the ground set X. The correctness of Rule R2 follows from
Lemma 2.2.

Theorem 2.3 Given an instance (X, F , k) of the SET SPLITTING problem, we can
construct a kernel (X1, F1, k1) such that |F1| < 2k1, k1 ≤ k, |X1| < 2k2

1 , and that
each subset in F1 has at most k1 − 1 elements. The running time of this process is
bounded by O(N), where N is the input size in terms of (X, F , k).

Proof For the given instance (X, F , k), we first apply Rule R1 to remove all subsets
that contain a single element. Then, we apply bucket-sort to sort in linear time the
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remaining subsets in F in non-increasing order in terms of their sizes. Finally, we
apply Rule R2 on the subsets in order in the sorted list, and stop at a subset on which
Rule R2 is not applicable or when the parameter value k reaches 0. This process
obviously takes time O(N).

Suppose that the instance produced by the above process is (X1, F1, k1). If k1 = 0
or |F1| ≥ 2k1, then by Lemma 2.1 (note that F1 contains no subsets of one element),
(X1, F1, k1) (as well as the original instance (X, F , k)) is a “Yes" instance. In this
case, our algorithm returns a trivial “Yes” instance ({a, b}, {{a, b}},1). Otherwise,
the correctness of the reduction rules R1 and R2 ensure that (X1, F1, k1) is a “Yes”
instance if and only if (X, F , k) is a “Yes” instance for the SET SPLITTING problem.
So our algorithm simply returns (X1, F1, k1).

To see that the instance (X1, F1, k1) satisfies the conditions in the lemma, first note
that if a non-trivial instance is returned by the process, then we must have |F1| < 2k1.
Moreover, since the subsets in F1 are sorted in non-increasing order in terms of their
sizes, and Rule R2 is not applicable to the first subset in the list, no subset in F1

contains more than k1 − 1 elements. In consequence, we also have |X1| < 2k2
1 . This

completes the proof of the lemma. �

Theorem 2.3 improves the time complexity of the kernelization algorithm given
in [7], which takes time O(N + n4), as well as that given in [15], which takes time
O(N + n2), where n is the maximum of |F | and |X|.

Intuitively, when we randomly partition X into (Xl,Xr) such that each element in
X has a probability of 1/2 to be assigned to Xl and a probability of 1/2 to be assigned
to Xr , larger subsets (i.e., subsets with more elements) will have a better chance to be
split. The following lemma confirms this intuition. Thus, if the collection F contains
many large subsets, then we can obtain a better kernel, or a kernel with fewer subsets.

Lemma 2.4 Let (X, F , k) be an instance of the SET SPLITTING problem. Suppose
that the number of subsets of i elements in F is mi for 1 ≤ i ≤ k − 1, and that the

number of subsets that have at least k elements is m′
k . If

∑k−1
i=2

2i−2
2i mi + m′

k ≥ k,
then a partition of X exists that splits at least k subsets in F .

Proof Let S1, . . . , Sm′
k

be the subsets in F that have at least k elements and let F<k =
F − {S1, . . . , Sm′

k
}.

We use a randomized process to partition X into (Xl,Xr) and let each element in
X go to Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then for
any subset S ∈ F<k that has i elements:

Pr(S is split) = 2i − 2

2i
.

If we let:

XS =
{

1, if S is split,

0, otherwise,
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then the expectation of the number of split subsets in F<k satisfies

E

( ∑

S∈F<k

XS

)

=
k−1∑

i=1

∑

|S|=i

E(S is split) =
k−1∑

i=1

2i − 2

2i
mi.

So there exists a partition of X such that the number of subsets in F<k that are split is

at least
∑k−1

i=1
2i−2

2i mi . Hence if
∑k−1

i=1
2i−2

2i mi ≥ k − m′
k , there must exist a partition

of X such that k −m′
k subsets in F<k are split. By repeatedly using Lemma 2.2, there

is a partition of X that splits k − m′
k + 1 subsets in F<k ∪ {S1}; there is a partition of

X that splits k − m′
k + 2 subsets in F<k ∪ {S1, S2}; and so on. In conclusion, there is

a partition of X that splits k subsets in F<k ∪ {S1, . . . , Sm′
k
} = F . �

Using the procedure that is similar to Theorem 2.3, but counting the number of
subsets in F of different size and using the result of Lemma 2.4, we have the follow-
ing theorem that is stronger than Theorem 2.3.

Theorem 2.5 Given an instance (X, F , k) of the SET SPLITTING problem, we can

find a kernel (X1, F1, k1) in time O(N) such that |F1| < 2k1 − ∑k1−1
i=3

2i−1−2
2i−1 mi ,

that k1 ≤ k, that each subset in F1 has at most k1 − 1 elements, and that |X1| < 2k2
1 ,

where N is the input size in terms of (X, F , k), and mi is the number of subsets of i

elements in F1, 1 ≤ i ≤ k1 − 1.

Proof We use the same procedure as the one presented in Theorem 2.3 to find the
kernel. Let the resulting instance be (X1, F1, k1). We also calculate the values mi

from F1, for 1 ≤ i ≤ k1 −1. If
∑k1−1

i=2
2i−2

2i mi ≥ k1 (note that no subset in F1 contains
more than k1 − 1 elements), then by Lemma 2.4, the instance (X1, F1, k1) is a “Yes”

instance so we return a trivial “Yes” instance. Otherwise, we have
∑k1−1

i=2
2i−2

2i mi <

k1, which gives |F1| = ∑k1−1
i=2 mi < 2k1 − ∑k1−1

i=3
2i−1−2

2i−1 mi . In this case, we obtain

a kernel (X1, F1, k1) such that |F1| < 2k1 − ∑k1−1
i=3

2i−1−2
2i−1 mi , that k1 ≤ k, that each

subset in F1 has at most k1 − 1 elements, and that |X1| < 2k2
1 . �

3 A Randomized Algorithm for Weighted SET SPLITTING

For the SET SPLITTING problem, Lokshtanov and Sloper [15] have currently the best
parameterized algorithm, whose running time is bounded by O∗(2.65k). Unfortu-
nately, their method does not seem to be extendable to the weighted case, neither do
the methods presented in [7, 8] for the unweighted case. In fact, no previous work is
known that gives a parameterized algorithm of running time of the form f (k)nO(1)

for the weighted SET SPLITTING problem.
In this section, we present a randomized algorithm to solve the weighted SET

SPLITTING problem. Our basic idea is that if a given instance (X, F , k) of the
weighted SET SPLITTING problem has a partition of the ground set X that splits k

subsets in the collection F , then there exists a subset X′ of at most 2k elements in X
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such that a proper partition of the elements in X′ can split at least k subsets in F . If
we use a randomized process to partition X into (Xl,Xr) and let each element in X

go to Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then the
probability that the elements in X′ are partitioned properly is at least 2/22k . Thus, if
we try O(4k) times of the randomized partitioning of the ground set X, we have a
good chance to find the proper partition of X′ if it exists. In fact, a more thorough
analysis reveals that only O(2k) trials are needed in this randomized algorithm.

Algorithm-1 SetSplitting(X, F , k)
input: A ground set X, a collection F of subsets of X, and an integer k

output: A partition (Xl,Xr ) of X and k subsets in F that are split by
(Xl,Xr ), or report ”no partition of X splits k subsets in F ”.

1. Q0 = ∅;
2. for i = 1 to 10 · 2k do
2.1. randomly partition X into Xl and Xr such that each element

in X has a probability 1/2 in Xl and a probability 1/2 in Xr ;
2.2. let Q be the collection of subsets in F that are split by (Xl,Xr );
2.3. if Q contains at least k subsets then

delete all but the k subsets of maximum weight in Q;
2.4. if the weighted sum of subsets in Q is larger than that in Q0 then

Q0 = Q;
3. return Q0.

Fig. 1 Randomized algorithm for WEIGHTED SET SPLITTING problem

Theorem 3.1 The weighted SET SPLITTING problem can be solved by a randomized
algorithm of running time O(2kN), where N is the input size in terms of (X, F , k).

Proof Let (X, F , k) be an instance of the weighted SET SPLITTING problem. Sup-
pose that there is a partition of the ground set X that splits at least k subsets in the
collection F . Let (Xl,Xr) be a partition of the ground set X and let S1, . . . , Sk be
k subsets in the collection F that are split by the partition (Xl,Xr), such that the
weighted sum of S1, . . . , Sk is the maximum over all collections of k subsets in F
that can be split by a partition of X. More specifically, let (l1, r1), . . . , (lk, rk) be
k pairs of elements in the ground set X such that li , ri ∈ Si , li ∈ Xl , and ri ∈ Xr

for all 1 ≤ i ≤ k. Note that it is possible that li = lj or ri = rj for some i �= j . In
consequence, each of the sets {l1, . . . , lk} and {r1, . . . , rk} may contain fewer than k

elements.
We construct a graph G = (V ,E), where V = {l1, l2, . . . , lk} ∪ {r1, r2, . . . , rk} and

E = {(li , ri) | 1 ≤ i ≤ k}. It is obvious that G is a bipartite graph with the left vertex
set L = {l1, l2, . . . , lk} and the right vertex set R = {r1, r2, . . . , rk}. Suppose that the
graph G has t connected components C1, · · · , Ct , where Ci = (Vi,Ei), with ni = |Vi |
and mi = |Ei |, for 1 ≤ i ≤ t . Then ni ≤ mi + 1 for 1 ≤ i ≤ t and

∑t
i=1 mi = k. If we

use a randomized process to partition X into (Xl,Xr) and let each element in X go
to Xl with a probability of 1/2 and go to Xr with a probability of 1/2, then for each
connected component Ci of the graph G, the probability that the vertex set Vi of Ci

is properly partitioned, i.e., either L∩Vi ⊆ Xl and R ∩Vi ⊆ XR , or R ∩Vi ⊆ Xl and
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L∩Vi ⊆ XR , is 2/2ni . Therefore, the total probability that the vertex set Vi for every
connected component Ci is properly partitioned, i.e., that the pair (li , ri) intersects
with both Xl and Xr for all 1 ≤ i ≤ k, is not less than

2

2n1
· 2

2n2
· · · 2

2nt
≥ 2

2m1+1
· 2

2m2+1
· · · 2

2mt+1
= 2t

2
∑t

i=1 mi+t
= 1

2k
.

The algorithm in Fig. 1 implements the above idea. By the above discussion, each
random partition (Xl,Xr) constructed in step 2.1 has a probability of at least 1/2k

to split the k subsets S1, . . . , Sk (recall that S1, . . . , Sk are the k subsets in F whose
weighted sum is the maximum over all collections of k subsets in F that are split by
a partition of X). Since step 2 loops 10 · 2k times, with a probability of at least

1 −
(

1 − 1

2k

)10·2k

≥ 99.99%,

one partition (Xl,Xr) constructed by step 2.1 splits the k subsets S1, . . . , Sk . For this
partition (Xl,Xr), steps 2.2–2.4 produces a collection Q of k subsets in F whose
weighted sum is the maximum over all collections of k subsets in F that can be split
by a partition of the ground set X.

Since each execution of steps 2.1–2.4 obviously takes time O(N), we conclude
that the running time of the algorithm SetSplitting is bounded by O(2kN).

For a general error bound ε > 0, we can simply run the algorithm SetSplitting
c times, where the constant c satisfies the condition (1 − 0.9999)c ≤ ε, which will
produce, in time O(2kN) and with a probability at least 1 − ε, a collection Q of k

subsets in F whose weighted sum is the maximum over all collections of k subsets
in F that can be split by a partition of the ground set X. �

Obviously, the randomized algorithm SetSplitting of running time O(2kN) can
be directly used to solve the simpler (unweighted) SET SPLITTING problem, and its
running time is significantly better than that of the previous best deterministic algo-
rithm [15] for the problem. Moreover, the algorithm SetSplitting is much simpler
than the one presented in [15]. The algorithm in [15] needs to call the algorithm for
the parameterized MAX-SAT problem developed in [4], which is quite involved.

By combining the kernelization algorithm, the time complexity for the SET SPLIT-
TING problem can be further improved.

Theorem 3.2 The (unweighted) SET SPLITTING problem can be solved by a ran-
domized algorithm of running time O(2kk2 + N), where N is the input size in terms
of (X, F , k).

4 Derandomization

The randomized algorithm in the previous section can be de-randomized via a de-
terministic construction of an (n, k)-universal set [16], which is described in this
section. We will always assume that n and k are two integers such that n ≥ k.
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Denote by Zn the set {0,1, . . . , n − 1}. A splitting function over Zn is a {0,1}
(i.e., Boolean) function over Zn. A splitting function f over Zn can be naturally
represented as a binary string s of length n such that the i-th bit of s is 0 if and only
if f (i) = 0. Moreover, a splitting function can be interpreted as a partition (X1,X2)

of the set Zn (i.e., putting all x in Zn such that f (x) = 0 in X1 and putting all y in
Zn such that f (y) = 1 in X2).

A subset S of Zn is a k-subset if S consists of exactly k elements. Let (S1, S2) be
a partition of the k-subset S. We say that a splitting function f over Zn implements
the partition (S1, S2) of S if f (x) = 0 for all x ∈ S1 and f (y) = 1 for all y ∈ S2.

Definition 1 [16] A set P of splitting functions over Zn is an (n, k)-universal set if
for every k-subset S of Zn and any partition (S1, S2) of S, there is a splitting function
f in P that implements (S1, S2). The size of an (n, k)-universal set P is the number
of splitting functions in P .

The best known deterministic construction of (n, k)-universal sets was developed
by Noar, Schulman, and Srinivasan, and was described via the construction of a more
general structure, i.e., (n, k, l)-splitters. Moreover, the construction was presented in
an extended abstract [16] in which many details were omitted. For the completeness
of our discussion, we will re-produce in this section the constructions and analysis
related to (n, k)-universal sets, and provide all needed details. We will also show in
detail how these techniques are used to derive an efficient deterministic parameterized
algorithm for the weighted SET SPLITTING problem.

We start with some terminologies and definitions in probability theory.
Let (�,Pr) be a probability space, where � is a finite set and Pr is the probability

measure. The size of (�,Pr) is the number of elements in �. The probability space
(�,Pr) is uniform if Pr(a) = 1/|�| for all a ∈ � (in this case, we will simply write
the probability space as �).

A {0,1}-random variable ξ over the probability space (�,Pr) is a function from
� to {0,1}. A group of h {0,1}-random variables ξ1, ξ2, . . . , ξh are mutually inde-
pendent if for any combination of h binary bits b1, . . . , bh in {0,1}, the following
holds:

Pr(ξ1 = b1, ξ2 = b2, . . . , ξh = bh) = Pr(ξ1 = b1) · Pr(ξ2 = b2) · · · · · Pr(ξh = bh).

A group of n {0,1}-random variables ξ1, ξ2, . . . , ξn are k-wise independent if every
group of k different {0,1}-random variables among ξ1, ξ2, . . . , ξn are mutually inde-
pendent.

The following lemma is crucial for our construction, and was first proved in [1].

Lemma 4.1 [1] Let n = 2d −1 for an integer d and k ≤ n be an odd number. There is
an algorithm of running time O(n(n+ 1)(k−1)/2) that constructs a uniform probabil-
ity space � of size 2(n+1)(k−1)/2 and a group of n k-wise independent {0,1}-random
variables ξ1, . . . , ξn over � such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all 1 ≤ i ≤ n.

We need the following observation for our analysis.
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Lemma 4.2 Let G = (V1 ∪ V2,E) be a bipartite graph with the vertex bipartition
(V1,V2), where |V1| = n and |V2| = m. Let ρ be a real number, 0 ≤ ρ ≤ 1. If every
vertex in V1 has degree at least ρm, then there is at least one vertex in V2 whose
degree is at least ρn.

Proof Since each vertex in V1 has degree at least ρm in the bipartite graph G, the
total number of edges in G is at least ρmn. Therefore, among the m vertices in V2, at
least one of them has degree at least ρn. �

Now we present the construction of an (n, k)-universal set of small size that, how-
ever, is not sufficiently efficient. Compared with the work presented in [16], the size
of our structure is more precise (and slightly improved), which will be important for
the later construction. Moreover, the time complexity of our construction is more
efficient than that described in [16].

Lemma 4.3 Let k be an odd number, k ≤ n. There is an (n, k)-universal set of size
bounded by 2ek2k logn, which can be constructed in time O(

(
n
k

)
k2k(2n)(k−1)/2),

where e is the base of the natural logarithm.

Proof Let n1 = 2d − 1, where d is the smallest integer such that n ≤ n1 (note that
n ≤ n1 ≤ 2n − 1). By Lemma 4.1, we can construct, in time O(n1(n1 + 1)(k−1)/2),
a uniform probability space � of size 2(n1 + 1)(k−1)/2 and a group of n1 k-wise
independent {0,1}-random variables ξ1, . . . , ξn1 over � such that Pr(ξi = 0) =
Pr(ξi = 1) = 1/2 for all 1 ≤ i ≤ n1. Pick the first n of these n1 random variables, we
get a group of n k-wise independent {0,1}-random variables ξ1, . . . , ξn over the uni-
form probability space � such that Pr(ξi = 0) = Pr(ξi = 1) = 1/2 for all 1 ≤ i ≤ n.
All these can be constructed in time O(n(2n)(k−1)/2).

Note that the uniform probability space � and the random variables ξ1, . . . , ξn

constructed above actually make a collection P of D = 2(n1 + 1)(k−1)/2 splitting
functions over Zn. In fact, for each element a in �, the values of the random variables
ξ1, . . . , ξn make a binary string ξ1(a) · · · ξn(a) of length n, which, as we explained
above, can be interpreted as a splitting function over Zn.

Construct a bipartite graph G = (V1 ∪ V2,E) with the vertex bipartition (V1,V2),
where V1 consists of D vertices, corresponding to the D splitting functions in the
collection P , and the vertex set V2 consists of D′ = (

n
k

)
2k vertices such that for each

k-subset S of Zn and each partition (S1, S2) of S, there is a corresponding vertex
in V2. An edge [v,w] is created in G if the splitting function corresponding to the
vertex v ∈ V1 implements the partition (S1, S2) of a k-subset S of Zn that correspond
to the vertex w ∈ V2.

Claim Each vertex in V2 has a degree D/2k .

To see why the claim holds, let S = {h1, . . . , hk} be any k-subset of Zn and let
(S1, S2) be a partition of S. Define k binary bits bhi

, 1 ≤ i ≤ k such that bhi
= 0 if

hi ∈ S1 and bhi
= 1 if hi ∈ S2. Consider the k mutually independent random variables
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ξh1 , . . . , ξhk
(they are mutually independent because the random variables ξ1, . . . , ξn

are k-wise independent), we have

Pr(ξh1 = bh1 , . . . , ξhk
= bhk

) = Pr(ξh1 = bh1) · · ·Pr(ξhk
= bhk

) = 1/2k

That is, there are D/2k elements a in � such that ξhi
(a) = bhi

for all 1 ≤ i ≤ k. Using
the interpretation above, there are D/2k splitting functions in the collection P that
implement the partition (S1, S2) of the k-subset S. By our construction of the graph
G, the vertex w in V2 corresponding to the partition (S1, S2) of the k-subset S has
degree D/2k . The claim now is proved because S is an arbitrary k-subset in Zn and
(S1, S2) is an arbitrary partition of S.

By Lemma 4.2, there is a vertex v1 in V1 in the graph G whose degree is at least
D′/2k . In other words, there is a splitting function in the collection P that implements
at least D′/2k partitions of k-subsets of Zn (these partitions can be partitions for
different k-subsets of Zn).

We perform the following operations on the graph G: mark the vertex v1 in V1 and
remove all vertices in V2 that are adjacent to v1 (or, equivalently, we mark a splitting
function f in P and remove all partitions of k-subsets of Zn that are implemented
by f ). Let D′

1 be the number of vertices in V2 in the remaining bipartite graph G′.
D′

1 ≤ (1 − 1/2k)D′.
Note that each vertex in V2 in the remaining graph G′ still has degree D/2k .

Therefore, by repeating the above process, in the remaining graph G′, we can find
a vertex v2 in V1 that is adjacent to at least D′

1/2k vertices in V2. Now we mark
v2, and remove the vertices in V2 that are adjacent to v2. Now there are at most
D′

2 ≤ (1 − 1/2k)D′
1 ≤ (1 − 1/2k)2D′ vertices in V2 in the remaining graph.

Repeat the above process until all vertices in V2 are removed. The number t ′ of
times the above process is repeated is not larger than the smallest integer t such that
(1 − 1/2k)tD′ < 1. Recall that D′ = (

n
k

)
2k , we get t ′ ≤ ek2k(logn + 1).

Each execution of the above process marks a vertex in V1, therefore, there are
at most ek2k(logn + 1) vertices in V1 that are marked in the above process. By our
construction, all vertices in the set V2 are adjacent to at least one marked vertex in V1.
Accordingly, there are D′′ ≤ ek2k(logn + 1) splitting functions in the collection P
such that every partition of any k-subset in Zn is implemented by at least one of these
D′′ splitting functions. That is, these D′′ splitting functions make an (n, k)-universal
set P ′ of size bounded by ek2k(logn + 1) ≤ 2ek2k logn.

Now we analyze the time complexity for the entire construction of the (n, k)-
universal set P ′. As given earlier, the construction of the uniform probability
space � and the {0,1} random variables ξ1, . . . , ξn, takes time O(n(2n)(k−1)/2).
The construction of the bipartite graph G takes time O(k|V1||V2|) = O(kDD′) =
O(

(
n
k

)
k2k(2n)(k−1)/2). To perform the above iteration process of marking vertices

in V1, we can represent the bipartite graph G has a D × D′ matrix, and keep
an array for the degrees of the vertices in V1. It is not difficult to verify that on
such data structures, the entire vertex marking process takes time O(t ′D + DD′) =
O(

(
n
k

)
2k(2n)(k−1)/2). Thus, the total construction of the (n, k)-universal set P ′ takes

time O(
(
n
k

)
2kk(2n)(k−1)/2). �
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The size of the (n, k)-universal set constructed in Lemma 4.3 is quite small. Un-
fortunately, the time O(

(
n
k

)
2kk(2n)(k−1)/2) for constructing such an (n, k)-universal

set given in the lemma is unacceptably high. Therefore, we need to play further tricks
to reduce the construction time.

Before we present our further construction, we give an intuitive explanation for
the basic idea. The construction time O(

(
n
k

)
2kk(2n)(k−1)/2) in Lemma 4.3 is of or-

der nO(k). Observing that kk/ log k = 2k , we try to (1) reduce the size of the ground
set from n to kO(1), and (2) reduce the parameter value k to a value k1 of order
k/ logk. In order to do (1), we apply a construction described in [10], which pro-
duces a family H of O(n) mappings from Zn to Zk2 such that for any k-subset S in
Zn there is a mapping in H that is injective from S to Zk2 . This enables us to con-
centrate on (k2, k)-universal sets because the composition of any (k2, k)-universal
set and the family H gives an (n, k)-universal set. To accomplish (2), we construct a
family B of partitions of the ground set Zk2 into t = O(log k) parts such that every
k-subset S in Zk2 is evenly distributed in the t parts for at least one partition in the
family B. Now for each partition (X1, . . . ,Xt ) in the family B, we construct the
(|Xi |, k/t)-universal sets, for i = 1, . . . , t . Since |Xi | ≤ k2 and k/t = O(k/ logk),
these universal sets with the reduced ground set size and reduced parameter value
can be constructed efficiently. Note that every partition of any k-subset in Zk2 can be
implemented by a combination of t splitting functions in the t universal sets for some
partitions (X1, . . . ,Xt ) of the ground set Zk2 . We also carefully construct the family
B so that the total number of partitions in B is bounded by 2o(k). Combining all these
constructions will give an (n, k)-universal set of size O∗(2k).

Formally, fix n and k, where k ≤ n. Define

k1 = the largest odd number bounded by k/(4 logk),

t = �k/k1�, (it is not hard to verify that t ≤ 4 logk + 2),

k2 = k − k1(t − 1), (note that k2 ≤ k1), (1)

n1 = k2,

p = a prime number such that n ≤ p < 2n,

where the existence of the prime number p above is guaranteed by Bertrand’s Con-
jecture [12].

Consider the set Zk2 = {0,1, . . . , k2 − 1}. Pick any t − 1 elements i2, i3, . . . , it in
Zk2 , such that i2 < i3 < · · · < it . These t − 1 elements naturally divide the set Zk2

into t sets consisting of consecutive elements (where X1 may be an empty set):

X1 = {0, . . . , i2 − 1}, X2 = {i2, . . . , i3 − 1}, . . . ,Xt = {it , . . . , k2 − 1}.
Such a division (X1,X2, . . . ,Xt ) of the set Zk2 based on t − 1 selected elements in
Zk2 will be called a t-grouping of the set Zk2 .

According to Lemma 4.3, we can construct, noting that k1 is an odd
number, an (n1, k1)-universal set P1 of size D1 ≤ 2ek12k1 logn1 in time
O(

(
n1
k1

)
2k1k1(2n1)

(k1−1)/2). Moreover, we define k′
2 = k2 if k2 is odd, and k′

2 = k2 + 1

if k2 is even, and construct an (n1, k
′
2)-universal set P2 of size D2 ≤ 2ek′

22k′
2 logn1 ≤
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2e(k2 + 1)2k2+1 logn1 in time O(
(
n1
k1

)
2k1k1(2n1)

(k1−1)/2) (we replaced k′
2 by k1 in

the time complexity simply because k′
2 ≤ k1). Using the definitions of k1, k2, and n1,

it is not hard to verify that

D1 ≤ 4k2k1, and D2 ≤ 4k2k2+1. (2)

Lemma 4.4 Let P be an (n, k)-universal set. Then for any n′, k ≤ n′ ≤ n, P is also
an (n′, k)-universal set, and for any k′ ≤ k, P is also an (n, k′)-universal set.

Proof Each splitting function in P can be regarded as a splitting function over Zn′ .
Since every k-subset of Zn′ is also a k-subset of Zn, we conclude that any partition
of any k-subset in Zn′ is implemented by a splitting function in P , i.e., P is also an
(n′, k)-universal set.

Every partition (S′
1, S

′
2) of any k′-subset S′ of Zn can be extended to a partition

(S1, S2) of a k-subset of Zn by adding k − k′ elements in Zn − S to S′
1. Now the

splitting function in P that implements (S1, S2) also implements the partition (S′
1, S

′
2)

of S′. Thus, P is also an (n, k′)-universal set. �

Now we are ready to construct our (n, k)-universal set P . Each splitting function
over Zn in P is defined based on an integer z between 0 and p − 1, a t-grouping
(X1, . . . ,Xt ) of the set Zk2 , t − 1 splitting functions f1, . . . , ft−1 in the (n1, k1)-
universal set P1, and a splitting function ft in the (n1, k

′
2)-universal set P2. The

splitting function over Zn is defined in Fig. 2.
First note that the function fz,(X1,...,Xt ),(f1,...,ft−1,ft )(a) is a well-defined splitting

function. In fact, by step 1, x is an element in Zk2 . Since (X1, . . . ,Xt ) is a t-grouping
of Zk2 , x must belong to a unique Xi and have a unique rank j in Xi . Thus, step 3
will return a Boolean value fi(j).

Definition Let P be the collection of all possible splitting functions over Zn defined
in Fig. 2, over all integers z, 0 ≤ z < p, all t-groupings (X1, . . . ,Xt ) of Zk2 , all pos-
sible lists (f1, . . . , ft−1) of splitting functions in the (n1, k1)-universal set P1 (where
the same function may appear more than once in the list), and all splitting functions
ft in the (n1, k

′
2)-universal set P2.

We will show that the collection P is the desired (n, k)-universal set. For this, we
still need one more lemma. We say that a function f on Zn is injective from a subset
S of Zn if for any two different elements x and y in S, f (x) �= f (y).

Splitting fz,(X1,...,Xt ),(f1,...,ft−1,ft )(a)

where a ∈ Zn is the input of the function, 0 ≤ z < p, (X1, . . . ,Xt ) is a t -grouping of Z
k2 ,

f1, . . . , ft−1 are splitting functions in P1, and ft is a splitting function in P2.
1. x = (az mod p) mod k2;
2. suppose that x is the j -th smallest element in Xi ;
3. return fi(j).

Fig. 2 A splitting function over Zn
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Lemma 4.5 [10] Let p be a prime such that n ≤ p < 2n, and let S be a k-subset
in Zn. Then there is an integer z, 0 ≤ z < p, such that the function gz over Zn,
defined as gz(a) = (az mod p) mod k2, is injective from S.

Now we are ready for our main result in this section.

Theorem 4.6 [16] The collection P defined above is an (n, k)-universal set of
size bounded by n2k+12 log2 k+12 log k+6 = n2k+o(k), and can be constructed in time
O(n2k+12 log2 k+12 log k) = O(n2k+o(k)).

Proof We first consider the size of P . There are p < 2n possible integers z. As de-
scribed earlier, each t-grouping of Zk2 can be given by t −1 different elements in Zk2 .

Therefore, the total number of different t-groupings of Zk2 is bounded by
(

k2

t−1

) ≤
k2(t−1). The number of possible lists of (f1, . . . , ft−1) of splitting functions in P1 is
|P1|t−1 = Dt−1

1 , and finally, the number of splitting functions in P2 is |P2| = D2.
Putting all these together, and recall the definitions and inequalities in (1) and (2), we
conclude that the size of P is bounded by 2nk2(t−1)Dt−1

1 D2 ≤ n2k+12 log2 k+12 log k+6.
To construct the collection P , we first construct the collections P1 and P2.

As discussed earlier, these two collections can be constructed in time
O(

(
n1
k1

)
2k1k1(2n1)

(k1−1)/2) = O(2k). Once the collections P1 and P2 are available,
the integers z, the t-groupings (X1, . . . ,Xt ) of Zk2 , and the lists (f1, . . . , ft−1) of
splitting functions in P1 and the functions ft in P2 can be systematically enumerated,
in constant time per combination, which gives a representation of the corresponding
splitting function in P . In conclusion, the collection P can be constructed in time
O(|P |) = O(n2k+12 log2 k+12 log k).

What remains is to show that P is an (n, k)-universal set. For this, let S be a
given k-subset of Zn and let (S1, S2) be a partition of S. By Lemma 4.5, there is
an integer z0, 0 ≤ z0 < p, such that the function gz0 over Zn is injective from S.
Let S′, S′

1, and S′
2 be the subsets of Zk2 that are the images of S, S1, and S2 under

gz0 , respectively. By the definitions, we have |S′| = |S|, |S′
1| = |S1|, |S′

2| = |S2|, and
(S′

1, S
′
2) is a partition of the k-subset S′ in Zk2 .

It is easy to see that there is a t-grouping (X0
1, . . . ,X

0
t ) of the set Zk2 such that

each of the first t − 1 subsets X0
1, . . . ,X

0
t−1 contains exactly k1 elements in S′, and

the last subset X0
t contains k2 elements in S′. Let Ti = X0

i ∩ S′ for 1 ≤ i ≤ t . Then
Ti is a k1-subset of X0

i for 1 ≤ i ≤ t − 1, and Tt is a k2-subset of X0
t . Moreover, the

partition (S′
1, S

′
2) of S′ induces a partition (Ti,1, Ti,2) for each Ti , 1 ≤ i ≤ t , where

Ti,1 = Ti ∩ S′
1 and Ti,2 = Ti ∩ S′

2.
Since P1 is an (n1, k1)-universal set, which by Lemma 4.4 is also a (|X0

i |, k1)-
universal set, for each i, 1 ≤ i ≤ t − 1, there is a splitting function f 0

i in P1 that
implements the partition (Ti,1, Ti,2) of the k1-subset Ti of X0

i (note that the subset X0
i

can be regarded as the set Z|X0
i |), for 1 ≤ i ≤ t − 1. That is, f 0

i (x) = 0 if x ∈ Ti,1 and

f 0
i (y) = 1 if y ∈ Ti,2. Similarly, there is a splitting function f 0

t in P2 that implements
the partition (Tt,1, Tt,2) of the k2-subset Tt .
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Now consider the splitting function fz0,(X
0
1,...,X0

t ),(f 0
1 ,...,f 0

t ). On an element a in the
subset S1, step 1 of the algorithm Splitting produces an element x = gz0(a) in the
set S′

1. Suppose that x is in the set X0
i , then x is in the set Ti,1. By the way we selected

the splitting function f 0
i , we have f 0

i (x) = 0. In summary, on an element a in the
subset S1, we have fz0,(X

0
1,...,X0

t ),(f 0
1 ,...,f 0

t )(a) = 0. Using exactly the same reasoning,
we can show fz0,(X

0
1,...,X0

t ),(f 0
1 ,...,f 0

t )(a) = 1 for every element a in S2. Therefore, the
function fz0,(X

0
1,...,X0

t ),(f 0
1 ,...,f 0

t ) in the collection P implements the partition (S1, S2)

of the k-subset S of Zn.
Since S is an arbitrary k-subset of Zn and (S1, S2) is an arbitrary partition of S,

we conclude that the collection P is an (n, k)-universal set. �

Using Theorem 4.6, we can derandomize our algorithm in the last section, and ob-
tain a deterministic parameterized algorithm of running time O∗(4k) for the weighted
SET SPLITTING problem. This also provides the first proof for the fixed parameter
tractability of the problem.

Theorem 4.7 The weighted SET SPLITTING problem can be solved by a deterministic
algorithm of running time O(N24k+6 log2 k+6 log k) = O(N24k+o(k)), where N is the
instance size of the problem.

Proof Let (X, F , k) be an instance of the weighted SET SPLITTING problem, where
without loss of generality, let the ground set X be Zn. We construct an (n,2k)-
universal set P based on Theorem 4.6, in time O(n22k+12 log2(2k)+12 log(2k)) =
O(n4k+o(k)).

We use each splitting function in P to partition the ground set X, and see if the
corresponding partition of X splits at least k subsets in F . If so, we record the col-
lection of the k subsets of the largest weight that are split by this partition. We repeat
this process for all splitting functions in P . The output of our algorithm is either
“No” if no partition of X is constructed in this process that splits k subsets in F , or
the collection of the k subsets of the largest weight over all collections recorded in
this process.

If the answer to the instance (X, F , k) is “No”, then the above algorithm obviously
returns “No” because the algorithm does not return “No” only if it actually constructs
a partition of X that splits k subsets in F . On the other hand, if the answer to the
instance is not “No”, then there is a partition of X that splits k subsets S1, . . . , Sk in
F whose total weight is the largest over all k split subsets caused by partitions of X.
As we explained in the previous section, there is a set W of at most 2k elements in
X and a partition (W1,W2) of W such that W1 ∩ Si �= ∅ and W2 ∩ Si �= ∅, for all
1 ≤ i ≤ k. Therefore, when we perform the above process using a splitting function
f in P that implements (W1,W2) (note by Lemma 4.4, f is an (n, |W |)-universal
set even if |W | < 2k), the corresponding partition of X will split all these k subsets
S1, . . . , Sk , and record the collection of k subsets of largest weight in F that can be
split by a partition of the ground set X. �
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5 Conclusion

In this paper, we studied parameterized algorithms for the SET SPLITTING problem.
We developed a new and effective technique based on a probabilistic method that
allows us to develop a simpler and more efficient (deterministic) kernelization algo-
rithm for the unweighted SET SPLITTING problem. This new technique has also led
to a better kernel if many subsets in the input have more than two elements.

We proposed a randomized algorithm for the weighted SET SPLITTING problem
that is based on a new subset partition technique and has its running time bounded by
O∗(2k). This is significantly better than the previous best known upper bound (which
is a deterministic algorithm that only works for the simpler unweigthed SET SPLIT-
TING problem). We also showed that our algorithm can be de-randomized, thus pro-
viding the first proof for the fixed parameter tractability of the weighted SET SPLIT-
TING problem.

The de-randomization process based on the construction of (n, k)-universal sets is
of general interest and has been used recently in the development of efficient para-
meterized algorithms for other problems, such as k-PATH, MATCHING and PACKING

problems that can be solved by randomized divide-and-conquer methods [6, 14].
We note that in the discussion of Theorem 2.5 on the kernelization algorithm for

the unweighted SET SPLITTING problem, if the instance (X1, F1, k1) satisfies the

condition |F1| ≥ 2k1 − ∑k1−1
i=3

2i−1−2
2i−1 mi , where mi is the number of subsets of i

elements in F1, 1 ≤ i ≤ k1 − 1, we can directly conclude that (X1, F1, k1) is a “Yes”
instance without providing an actual partition of the ground set X1 that splits k1
subsets in F1. Our probabilistic analysis given in Lemma 2.4 also does not seem to
hint an easy construction of such a partition. It will be interesting to see whether such
a partition can be constructed efficiently in this case.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal inde-
pendent set problem. J. Algorithms 7, 567–683 (1986)

2. Andersson, G., Engebretsen, L.: Better approximation algorithms and tighter analysis for set splitting
and not-all-equal Sat. In: ECCCTR: Electronic Colloquium on Computational Complexity (1997)

3. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complex-
ity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties.
Springer, Berlin (1999)

4. Chen, J., Kanj, I.: Improved exact algorithms for Max-Sat. Discrete Appl. Math. 142, 17–27 (2004)
5. Chen, J., Lu, S.: Improved algorithm for weighted and unweighted set splitting problems. In: CO-

COON 2007. Lecture Notes in Computer Science, vol. 4598, pp. 573–547 (2007)
6. Chen, J., Lu, S., Sze, S., Zhang, F.: Improved algorithms for path, matching, and packing problems.

In: Proc. of the Eighteen Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007),
pp. 298–307 (2007)

7. Dehne, F., Fellows, M., Rosamond, F.: An FPT algorithm for set splitting. In: WG 2003. Lecture
Notes in Computer Science, vol. 2880, pp. 180–191 (2003)

8. Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative compression, mod-
eled crown reductions: New FPT techniques, and improved algorithm for set splitting, and a novel
2k kernelization of vertex cover. In: IWPEC 2004. Lecture Notes in Computer Science, vol. 3162,
pp. 127–137 (2004)

9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)



Algorithmica (2009) 54: 472–489 489

10. Fredman, M., Komlos, J., Szemeredi, E.: Storing a sparse table with O(1) worst case access time.
J. ACM 31, 538–544 (1984)

11. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco (1979)

12. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 5th ed. Oxford University Press,
London (1978)

13. Kann, V., Lagergren, J., Panconesi, A.: Approximability of maximum splitting of k-sets and some
other APX-complete problems. Inf. Process. Lett. 58, 105–110 (1996)

14. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: WG 2006. Lecture Notes in
Computer Science, vol. 4271, pp. 58–67 (2006)

15. Lokshtanov, D., Sloper, C.: Fixed parameter set splitting, linear kernel and improved running time.
In: Algorithms and Complexity in Durham 2005. Texts in Algorithmics, vol. 4, pp. 105–113. King’s
College Press, London (2005)

16. Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proc. 36th
IEEE Symp. on Foundations of Computer Science (FOCS 1995), pp. 182–190 (1995)

17. Zhang, H., Ling, C.: An improved learning algorithm for augmented naive Bayes. In: PAKDD 2001.
Lecture Notes in Computer Science, vol. 2035, pp. 581–586 (2001)

18. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three
variables per constraint. In: Proc. of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 1998), pp. 201–220 (1998)

19. Zwick, U.: Outward rotations: A tool for rounding solutions of semidefinite programming relaxation,
with applications to max cut and other problem. In: Proc. of the Thirty-First Annual ACM Symposium
on Theory of Computing (STOC 1999), pp. 679–687 (1999)


	Improved Parameterized Set Splitting Algorithms: A Probabilistic Approach
	Abstract
	Introduction
	A New Kernelization Algorithm for set splitting
	A Randomized Algorithm for Weighted set splitting
	Derandomization
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


