
CSCE-658 Randomized Algorithms

Lecture #9, March 1, 2016

Lecturer: Professor Jianer Chen

9 Analysis of algorithm expected complexity

We have seen that the expectation of a random variable sometimes may not provide much useful
information for what one might be interested in. On the other hand, if we have more information on
the value distribution of a random variable, such as its upper bound or lower bound, then we will have
a better control on its values, in terms of its expectation. There are a number of results addressing this
issue. We will start with the simpliest (probably also the most famous) one. We will show how this is
used in the analysis of “expected complexity” of algoritms.

9.1 Markov Inequality

Recall our discussion in the previous section on the expected size of a random cut for an undirected
graph. We observed that an upper bound on the values of the random variable will limit the probability
for the random variable to have values much smaller than the expectation. Similarly, if we can bound
the values of a random variable from below, we will be able to limit the probability for the random
variable to have values much larger than the expectation. This is given by the famousMarkov Inequality,
which assumes a lower bound 0 for the values of the random variable.

Theorem 9.1 (Markov Inequality) Let X be a random variable that takes only non-negative values.

Then for all t > 0, we have Pr[X ≥ t] ≤ E[X]/t.

proof. First note that the events “X ≥ t” and “X < t” form a partition of the sample space.
Therefore, by Lemma 8.3, we have

E[X] = Pr[X ≥ t] ·E[X | X ≥ t] + Pr[X < t] ·E[X | X < t].

Since E[X | X ≥ t] ≥ t, Pr[X < t] ≥ 0, and E[X | X < t] ≥ 0 (the last inequality uses the assumption
that X is non-negative), from the above formula, we have

E[X] ≥ Pr[X ≥ t] · t.

Dividing both sides by the positive number t gives Markov Inequality.

If we let t = r · E[X] in Theorem 9.1, we will get the following result, which is also called Markov
Inequality.

Corollary 9.2 (Markov Inequality) Let X be a random variable that takes only non-negative values.

Then for all r > 0, we have Pr[X ≥ r ·E[X]] ≤ 1/r.

Corollary 9.2 is probably more intuitive: the probability for the random variable X to have a value
at least r times its expected value E[X] is not larger than 1/r.

Markov Inequality (either Theorem 9.1 or Corollary 9.2) does not seem to address our concern on
the randomized algorithm for the Max-Cut problem in subsection 8.3: where we wanted to limit the
probability for the cut size from below so that it would not go too much smaller than the expectation.
On the other hand, Markov Inequality limits the probability for the random variable values from above
so that it would not be too much larger than the expectation. Indeed, the Max-Cut problem is a
maximization problem in which we are most interested in preventing the solution values from going too
small. On the other hand, Markov Inequality seems to be more directly applicable to minimization

problems where we are interested in preventing the solution values from going too large.

42

In particular, Markov Inequality is very helpful when we study the complexity of an algorithm (either
deterministic or randomized), which is something we surely want to minimize, assuming that we can
represent the complexity as a random variable X and derive the expectation E[X]. Since the complexity
of an algorithm can never be negative, the condition on the random variable X in Markov Inequality
is satisfied automatically. Moreover, by letting the parameter r be a properly chosen (large) constant,
Corollary 9.2 shows that we can bound the complexity of the algorithm by the same asymptotic order
as its expected value E[X] with a hight probability, i.e., Pr[X < r ·E[X]] ≥ 1− 1/r.

We will give two examples to illustrate this technique.

9.2 Expected complexity of an algorithm

Sorting is a fundamental task in computer science, which, on a given set of elements (without loss
of generality, we can assume that these elements are real numbers), outputs the elements in a nonde-
creasing order. There have been many sorting algorithms. One of the most famous sorting algorithms
is QuickSort, whose general framework looks as follows (to simplify our discussion, we will assume
that all elements given in the input set are distinct):

1. pick a “pivot” element x in the input;
2. split the input into two sets S1 and S2, such that all elements in S1 are smaller than x

and all elements in S2 are larger than x;
3. recursively sort S1 and S2;
4. output the concatenation of S1, x, and S2.

One advantage of QuickSort is that step 2 of the algorithm that splits the input set can be im-
plemented “in place,” i.e., it can be implemented using almost no extra storage space. For example,
suppose that the input set is given as an array A[1..n], and suppose that we want to split the elements
in the subarray A[l..u] using the element A[k], l ≤ k ≤ u, then we can use the following subroutine:

Algorithm 14 Split(A, l, u, k)

1. swap A[l] and A[k];
2. i = l + 1; j = u;
3. while i ≤ j do {if A[l] > A[i] then i = i+ 1 else swap A[i] and A[j]; j = j − 1}
4. swap A[l] and A[j]; return (j).

To see the correctness of the algorithm, observe that we keep the following conditions in the while loop
in step 3: all elements before A[i] (but not including A[i]) are not larger than A[l] and all elements
after A[j] (but not including A[j]) are larger than A[l].

A well-known fact is that QuickSort does poorly in the worst case if we pre-specify the way of
picking the pivot in the algorithm. For example, if we always pick the first element in the subarray
A[l..u] as the pivot, then in the cases when the subarray is already sorted, QuickSort takes time
Ω(h2), where h = u− l + 1 is the size of the subarray.

Thus, a natural approach to overcome the worst-time performance is to let the algorithm to pick a
pivot randomly, which suggests the following randomized algorithm:

Algorithm 15 R-QuickSort(A, l, u)
Input: subarray A[l..u];
Output: subarray A[l..u] with the elements sorted in non-decreasing order

1. if l ≥ u then return;
2. uniformly pick a random integer k in [l..u]; \\ pick A[k] as the pivot
3. h = Split(A, l, u, k);
4. recursively call R-QuickSort(A, l, h− 1) and R-QuickSort(A, h+ 1, u).

Of course, to sort the entire array A[1..n], we simply call R-QuickSort(A, 1, n).

43

It may be helpful at this point to discuss what are the outcomes of our sample space. Let A[1..n]
be an array that is the input to the algorithm R-QuickSort(A, 1, n). Each possible execution of R-

QuickSort(A, 1, n) can be represented by a binary tree (by the way, here we allow a node in a binary
tree to have only one child), as follows. The root of the tree is the pivot picked in Split(A, 1, n) (i.e.,
the element A[h] after step 3 in R-QuickSort(A, 1, n)), whose left subtree is the tree corresponding
to the recursive call R-QuickSort(A, 1, h− 1) (thus, the root of the left subtree, i.e., the left child of
A[h], is the pivot picked in Split(A, 1, h−1)), and whose right subtree is the tree corresponding to the
recursive call R-QuickSort(A, h+1, n) (thus, the root of the right subtree, i.e., the right child of A[h],
is the pivot picked in Split(A, h + 1, n)). Since after step 3 in the algorithm R-QuickSort(A, 1, n),
all elements in A[1..h − 1] are smaller than A[h] and all elements in A[h + 1..n] are larger than A[h],
the above definition of the binary tree actually gives a binary search tree.1 In conclusion, each outcome
of our sample space is a binary search tree of the elements in the input A[1..n].

We analyze the expected running time of the algorithm R-QuickSort(A, 1, n). Each execution of
R-QuickSort consists of some “local steps” (i.e., steps 1-3), plus two recursive calls to R-QuickSort.
Thus, the execution of the algorithm R-QuickSort(A, 1, n) is a collection of the (recursive) executions
of R-QuickSort. As a result, the running time of the algorithm R-QuickSort(A, 1, n) is the sum of
the “local complexities” (i.e., steps 1-3) of these executions. Since the complexity of the local steps of
each execution is dominated by step 3 (i.e., the call to Split that splits the input elements), and the
complexity of each execution of the subroutine Split is proportional to the number of comparisons of
input elements (i.e., step 3 in Split that compares A[l] and A[i]), we conclude that the complexity of the
algorithm R-QuickSort(A, 1, n) is proportional to the total number of element comparisons carried
out in all these recursive executions. Thus, in order to derive an asymptotic order for the running time,
we only need to concentrate on counting the number of element comparisons in the execution of the
algorithm R-QuickSort(A, 1, n).

Let {a1, a2, . . . , an} be the elements in A[1..n], sorted in non-decreasing order: a1 < a2 < · · · < an.
For any two indices i and j, 1 ≤ i < j ≤ n, let Xij be the random variable that is equal to 1 if
elements ai and aj are compared in the algorithm R-QuickSort(A, 1, n) and 0 otherwise. By the
above discussion, the running time of the algorithm R-QuickSort(A, 1, n) is of the same order of
X =

∑

i 6=j Xij . Thus, the expected running time of the algorithm is E[X], which, by Linearity of
Expectation, is given by

E[X] =
∑

i 6=j

E[Xij] =
∑

i 6=j

(

∑

ω∈Ω

Pr[ω] ·Xij(ω)

)

=
∑

i 6=j

Pr[Xij = 1]. (22)

here we have used “Xij = 1” to represent an event. Since when two elements are compared, one of
them must be a pivot, if Xij = 1 then one of ai and aj must be a pivot (see step 3 in algorithm Split).
Moreover, if any ah between ai and aj is the pivot, i < h < j, then after the splitting using the pivot
ah, the elements ai and aj are placed in two different subarrays that will be processed by two different
recursive executions of the algorithm, so they will never be compared. Summarizing this, we get

“Xij = 1” if and only if the first pivot in {ai, ai+1, . . . , aj} is either ai or aj .

Thus, the event “Xij = 1” can be described verbally as “when the first element in {ai, ai+1, . . . , aj} is
picked as a pivot, this pivot is either ai or aj .”

Before any element in {ai, ai+1, . . . , aj} is used as a pivot, all elements in {ai, ai+1, . . . , aj} remain
in the same subarray A[l..u] (but not necessarily consecutive). Define Eij to be the event that the
execution of R-QuickSort(A, l, u) is the first that uses an element in {ai, ai+1, . . . , aj} as its pivot,
and let Eij be the event that the execution of R-QuickSort(A, l, u) uses the element ai or aj as its
pivot. Then the event “Xij = 1” is the event Eij under the condition Eij . Thus,

Pr[Xij = 1] = Pr[Eij | Eij] = Pr[Eij ∩ Eij]/Pr[Eij].

1A binary search tree for a set S of n elements is an n-node binary tree T for which there is a one-to-one mapping

between the nodes of T and the elements in S such that the element in S mapped to a node v in T is larger than all

elements in S mapped to the left subtree of v, and smaller than all elements in S mapped to the right subtree of v.

44

Let h = u− l + 1 be the size of the subarray A[l..u], then it is easy to verify: Pr[Eij ∩ Eij] = 2/h and
Pr[Eij] = (j − i+ 1)/h. Therefore, Pr[Xij = 1] = 2/(j − i+ 1). bringing this to (22), we get

E[X] =
∑

i 6=j

Pr[Xij = 1] =
∑

i 6=j

2

j − i+ 1
=

n
∑

i=1

n
∑

j=i+1

2

j − i+ 1
= 2

n
∑

i=1

n−i+1
∑

h=2

1

h
≤ 2

n
∑

i=1

Hn = 2nHn,

where Hn =
∑n

h=1(1/h) ≤ lnn + 1 is the n-th Harmonic number (note that lnn < log n), which is
another important number used heavily in combinatorial and probabilistic analysis.

Theorem 9.3 The expected running time of the algorithm R-QuickSort is O(n log n).

We show how to apply Markov Inequality to the algorithm R-QuickSort. The random variable X
is the number of element comparisons in the algorithm R-QuickSort, which is clearly a non-negative
number. Thus, Corollary 9.2 is applicable. Since E[X] ≤ 2nHn, we have

Pr[X ≥ 10nHn)] ≤ Pr[X ≥ 5 ·E[X]] ≤
1

5
= 20%,

where the second inequality used Markov Inequality (Corollary 9.2). Therefore, with a high probability
(at least 80%) the algorithm R-QuickSortmakes less than 10nHn element comparisons. This explains
why QuickSort runs fast in most cases in practice, although its worst-case time complexity is Ω(n2).

We remark that Theorem 9.3 holds true for every input. Thus, given any input array A[1..n], we can
expect that R-QuickSort sorts the array in time O(n log n) in most cases. Here the sample space we
use consists of all executions of the algorithm on the given input, and the expected time is taken over all
these executions. There is also another version of the probabilistic analysis on deterministic QuickSort
algorithms, where the sample space consists of all possible inputs in a pre-assumed distribution, and
the expected running time is derived over all these inputs (see [20]).

We give an example for this kind of probabilistic analysis, which derives the expected running time
of a deterministic algorithm, while the sample space is taken over all possible inputs.

Image that we are watching a stream of data (e.g., data from stock market), and we have a (compli-
cated) reaction strategy that is developed based on the minimum value of the data and we want to keep
the strategy updated as promptly as possible. We may use the following (deterministic) algorithm:

1. min = +∞;
2. loop
2.1 read the next value v;
2.2 if min > v then {min = v; update the strategy;}

Since the reaction strategy is complicated, updating it can be expensive. Thus, an immediate question
for this simple algorithm is: how often do we have to update the strategy?

The worst case is terrible: if the input values are sorted in decreasing order, then we have to update
the strategy for every value we read from the stream! If we are more interested in the stochastic
performance of the algorithm, we might want to ask a question like this:

What is the expected number of strategy updates when we totally read n values?

Since we are only concerned with the orderings of input values, not the values themselves, we can
assume that our sample space consists of the n! permutations of the numbers {1, 2, . . . , n}, each with a
probability 1/n!. Thus, let the input stream be {a1, a2, . . . , an}, which is a permutation of {1, 2, . . . , n}.
Define a random variable Xh that is equal to 1 if an update is needed after reading ah, and 0 otherwise.
Then X = X1 +X2 + · · ·+Xn is the total number of updates we need when we read the stream. It is
easy to see that “Xh = 1” if and only if ah is the smallest among the first h elements {a1, a2, . . . , ah}
in the stream. Therefore, to compute E[Xh] = Pr[Xh = 1], we need to count the total number of
permutations of {1, 2, . . . , n} in which the h-th element is the smallest among the first h elements.

The n! permutations of {1, 2, . . . , n} can be divided into
(

n
h

)

groups. Each group GS is associated
with a subset S of h elements in {1, 2, . . . , n} such that the first h elements in each permutation in

45

GS are the h elements in S. Thus, the group GS contains exactly h!(n − h)! permutations, in which
(h− 1)!(n− h)! of the permutations have the smallest element in S in the h-th position. In conclusion,
the total number of permutations of {1, 2, . . . , n} in which the h-th element is the smallest among the
first h elements is equal to

(

n
h

)

· (h− 1)!(n− h)!.
Since our sample space is the set of all n! permutations of {1, 2, . . . , n} and since all permutations

are assumed to have the same probability, we derive

E[Xh] = Pr[Xh = 1] =

(

n
h

)

· (h− 1)!(n− h)!

n!
=

1

h
.

This, by Linearity of Expectation, gives

E[X] = E

[

n
∑

h=1

Xh

]

=
n
∑

h=1

E[Xh] =

n
∑

h=1

1

h
= Hn ≤ lnn+ 1.

Here again we see the Harmonic number Hn.
This shows that the simple algorithm given above probably works fine in practice, and relatively,

only very few strategy updates are needed. For example, if n is one trillion (109), then the number of
strategy updates is around ln 109 < 21. Using Markov Inequality (Corollary 9.2), we also conclude that
the probability that more than 105 strategy updates are performed is less than 20%.

9.3 Las Vegas and Monte Carlo

There is a conceptual difference between the randomized algorithm R-QuickSort (Algorithm 15) and
the randomized algorithms we have seen in previous sections, such as Karger’s algorithm for Min-Cut

(Algorithm 3) and the Divide-and-Conquer algorithm for Max-Path (Algorithm 13). One type of
algorithms such as R-QuickSort always return a correct solution (e.g., for R-QuickSort, the sorted
sequence of the input elements) where the random variation from one execution to another is its running
time, for which we study its expectation. This kind of algorithms are called Las Vegas algorithms. On
the other hand, algorithms such as Karger’s algorithm always guarantee a specific running time (in the
worst case) while the random variation is the algorithm correctness (i.e., certain random executions of
the algorithms may lead to incorrect conclusions) where we study its success probability. This kind of
algorithms are called Monte Carlo algorithms.

Of course, we are most interested in algorithms whose running time (or expected running time) is
bounded by a polynomial of the input size. For decision problems (see Section 4.2), we have seen the
complexity classes defined based on polynomial-time Monte Carlo algorithms, such as RP (one-side
error Monte Carlo algorithms) and BPP (two-side error Monte Carlo algorithms). We also have the
following complexity class defined based on polynomial-time Las Vegas algorithms:

Definition 9.1 (Zero-Error Class ZPP) A decision problem Q is in the class ZPP if it can be solved
by a Las Vegas algorithm of expected running time bounded by a polynomial of the input size.

Thus, if a (decision) problem Q is in ZPP, then there is a randomized algorithm A that on every
instance x of Q always returns a correct conclusion (yes/no), with its running time being a random
variable whose expectation is bounded by a fixed polynomial p(|x|) of |x|.

We have the following simple relationship between ZPP and RP.

Lemma 9.4 ZPP ⊆ RP.

proof. Let Q be a decision problem in ZPP. Let Azpp be a Las Vegas algorithm that solves Q with
running time t(n). By the assumption of the lemma, E[t(n)] ≤ p(n). Consider the following algorithm:

Algorithm Arp(x)

1. execute the algorithm Azpp on x for at most 2p(|x|) steps;
2. if the algorithm Azpp(x) stops within 2p(|x|) steps with a conclusion

then return the conclusion of Azpp(x)
else return “no”.

46

The running time of the algorithm Arp(x) is bounded by O(p(n)) on any input of size n. Thus, it is a
Monte Carlo algorithm. For any instance x of size n, by Markov Inequality (Corollary 9.2),

Pr[t(n) ≥ 2p(n)] ≤ Pr[t(n) ≥ 2 ·E[t(n)]] ≤
1

2
.

That is, the probability that the algorithm Azpp(x) runs 2p(n) or more steps is bounded by 1/2. Thus,
with a probability at least 1/2, the algorithm Azpp(x) on a yes-instance x of Q will run in at most 2p(n)
steps, so step 1 of the algorithm Arp(x) will return a “yes”, which will make the algorithm Arp(x) to
return “yes” on x (so Azpp(x) returns “yes” with a probability at least 1/2). On the other hand, for a
no-instance y, either the algorithm Azpp(y) reaches a “no” decision in step 1 of the algorithm Arp(y)
that will make the algorithm Arp(y) to return “no”, or the algorithm Azpp(y) does not reach a decision
in step 1, in this case, the algorithm Arp(y) also returns “no” in step 2. Thus, on the no-instance y,
the algorithm Arp(y) always (i.e., with a probability 1) returns “no”. The algorithm Arp shows that
the problem Q is in RP. Since Q is an arbitrary problem in ZPP, this concludes that ZPP ⊆ RP.

Thus, the class ZPP seems “weaker” than the one-side error class RP. Since the class RP is a
subclass of the two-side error class BPP, we get the following inclusion relations:

ZPP ⊆ RP ⊆ BPP.

Recall that it is unlikely that an NP-complete problem can be solved by a BPP-algorithm (Theorem 4.4).
The above relation shows that it is also very unlikely that an NP-complete problem is solvable by a
Las Vegas algorithm whose expected running time is bounded by a polynomial.

For students who are more interested in complexity theory, the following theorem gives a more
precise characterization of the class ZPP.

Theorem 9.5 ZPP = RP ∩ co-RP.

proof. By definition, a problem S is in co-RP if its complement S is in RP (S is defined to be the
decision problem such that for all x, x is a yes-instance of S if and only if x is a no-instance of S). Note
that the complement of the complement of a decision problem S is the problem S itself.

Let Q be a problem in ZPP. Lemma 9.4 claims Q ∈ RP. Note that the complement Q of Q is also
in ZPP — simply reversing the yes/no decisions in the ZPP-algorithm for Q gives a ZPP-algorithm for
Q. Thus, by Lemma 9.4 again, Q is in RP so Q is in co-RP. This proves ZPP ⊆ RP ∩ co-RP.

For the other direction, let Q be a decision problem in RP ∩ co-RP. Then there are two Monte
Carlo algorithms Arp and Acorp, such that

• For a yes-instance x of Q, the algorithm Arp returns a “yes” with a probability ≥ 1/2,
• For a no-instance y of Q, the algorithm Acorp returns a “yes” with a probability ≥ 1/2.

Without loss of generality, we assume that both algorithms Arp and Acorp have their running time
bounded by the same polynomial p(n). We construct a new algorithm Azpp that works as follows:

Azpp(x)

loop
1. if Arp(x) = yes then return “yes”; stop;
2. if Acorp(x) = yes then return “no”; stop.

In case neither of the algorithms Arp(x) and Acorp(x) in steps 1-2 returns “yes”, the algorithm Azpp(x)
continues for the execution of the next loop. Note that the algorithm Azpp has zero error: by the
assumption, both algorithms Arp and Acorp are RP-algorithms. Thus, if Arp(x) returns “yes” in any
execution then x must be a yes-instance of Q, and if Acorp(x) returns “yes” in any execution then

x must be a yes-instance of Q, i.e., a no-instance of Q. To study the expected running time of the
algorithm Azpp, we assume that each execution of steps 1-2 on an input of size n takes exactly 2p(n)
steps (we can simply modify the algorithms to let each of them stop in exactly p(n) steps). Therefore,

47

if the algorithm Azpp(x) stops after h executions of steps 1-2, then the algorithm Azpp(x) runs in
exactly T (n) = 2hp(n) steps, where n = |x|.

Consider a yes-instance x of the problem Q, and suppose that the algorithm Azpp stops after h
executions of steps 1-2. Then for the first h−1 executions, the algorithm Arp(x) in step 1 returns “no”.
Since Arp(x) is an RP-algorithm for Q and since these h − 1 executions of Arp(x) are independent,
we conclude that this happends with a probability not larger than 1/2h−1. This gives the following
formula for computing the expectation of the running time T (n) of Azpp (using Definition in (20)):

E[T (n)] =
∑

T (n)=2h·p(n)

(2h · p(n)) · Pr[T (n) = 2h · p(n)] ≤ 2p(n)
∑

h≥1

h

2h−1
≤ 8p(n),

where we have used the formula
∑∞

h=1 h/2
h = 2 (please verify this by yourself). Therefore, on the

yes-instance x of the problem Q, the expected running time of the algorithm Azpp is O(p(n)).
Similarly, for a no-instance y of the problem Q, since the algorithm Acorp is an RP-algorithm for

Q, the probability that the algorithm Azpp stops after h executions of steps 1-2, i.e., the first h − 1
independent executions of the algorithm Acorp on y all return “no” is bounded by 1/2h−1. From this
we can derive that the expected running time of the algorithm Azpp is O(p(n)).

This shows that the algorithm Azpp has its expected running time bounded by O(p(n)), where p is
a polynomial. Since Azpp has zero error, Azpp is a ZPP-algorithm for the problem Q. Since Q is an
arbitrary problem in RP ∩ co-RP, we conclude that RP ∩ co-RP ⊆ ZPP. This completes the proof for
the equality RP ∩ co-RP = ZPP

We remark that the precise relationships between the complexity classes ZPP, RP, and BPP are all
unknown, which are all significant open problems in the research of complexity theory. In particular,
it is unknown whether ZPP = RP and/or RP = BPP.

In the discussions starting from now, we will extend our notations of the types of randomized
algorithms and of randomized complexity classes to search or optimization problems, whenever there is
no serious confusion. Therefore, a ZPP-algorithm for a search or optimization problem is an algorithm
that always returns a correct solution to the input instance, with its expected running time bounded by
a polynomial of the input size. For instance, we can say that R-QuickSort is a ZPP-algorithm for the
Sorting problem. Similarly, an RP-algorithm for a search or optimization problem Q is an algorithm
that runs in polynomial time in the worst case, and returns a correct solution to the input instance
with a probability at least 1/2. The algorithm Karger (Algorithm 3 in Section 1) is an example of an
RP-algorithm. We can also similarly define a BPP-algorithm if the algorithm runs in polynomial time
(in the worst case), and with a high probability (e.g., ≥ 3/4), either returns a correct solution to the
input instance or reports correctly that no meaningful solution exists for the input instance.

48

