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Lecturer: Professor Jianer Chen

8 Random variables and expectation

We have seen applications of randomized algorithms. Most of our analysis were based on “elementary”
probability theory that you probably have seen in your high school math class. Now we would like to
move forward a little bit and use techniques in probability theory that is a little bit less elementary.

8.1 Random variables

A random variable on a sample space Ω is just a function from Ω to the set R of real numbers. Indeed,
the range of a random variable can be other things, such as a pair of integers, rather than just real
numbers. However, this kind of random variables either is less interesting in our discussion or can be
composed using functions on random variables as defined here. Thus, we will use our definition in
the following discussion. Rather than writing a random variable as f(ω), the convention is to write a
random variable as a capital letter such as X and Y and make the argument implicit: X is really X(ω).

Random variables can be any functions defined on a sample space. Consider the sample space we
have seen in our Homework #1, Question 2: Henry and Tom play a game by repeatedly tossing a fair
coin. Henry gains a point if the coin turns head and Tom gains a point if the coin turns tail. The game
is over if either Henry gets two points or Tom gets three points. The outcomes of the sample space are
(the parentheses indicate the probabilities of the outcomes):

HH (1/4), HTH (1/8), HTTH (1/16), HTTT (1/16), THH (1/8),

THTH (1/16), THTT (1/16), TTHH (1/16), TTHT (1/16), TTT (1/8).

Thus, if we define X1 to be the random variable for the points gained by Henry, then

X1(HH) = 2, X1(HTH) = 2, X1(HTTH) = 2, X1(HTTT ) = 1, X1(THH) = 2,

X1(THTH) = 2, X1(THTT ) = 1, X1(TTHH) = 2, X1(TTHT ) = 1, X1(TTT ) = 0. (18)

On the other hand, you may think that the points gained by Tom are paid off by Henry. Thus, if we
define X2 to be the “net” gain for Henry, then

X2(HH) = 2, X2(HTH) = 1, X2(HTTH) = 0, X2(HTTT ) = −2, X2(THH) = 1,

X2(THTH) = 0, X2(THTT ) = −2, X2(TTHH) = 0, X2(TTHT ) = −2, X2(TTT ) = −3. (19)

Sometimes we introduce random variables without explicitly giving its values on individual out-
comes. For instance, we may say “take an integer uniformly from {1, 2, . . . , 100}”, which really means
that our sample space is {1, 2, . . . , 100} (where each outcome has a probability 1/100), while we are
defining a random variable X(ω) = ω for all ω in {1, 2, . . . , 100}.

We will assume in the rest of this section that our probability space (Ω,F ,Pr) is discrete, i.e., the
sample space Ω is finite or countably infinite, and all subsets of Ω are events in F .

A useful random variable defined based on events is given as follows.

Definition 8.1 Let (Ω,F ,Pr) be a probability space, and let E ∈ F be an event. Then the (event)
indicator of E is the random variable that is defined as follows:

IE(ω) =

{

1 if ω ∈ E

0 if ω 6∈ E

Conversely, events can be defined based on random variables. For example, let X be a random
variable, then an event can be defined as {ω | X(ω) > 10}, which will simply be written as “X > 10”.

New random variables can be constructed using functions on existing random variables. For example,
suppose that both X and Y are random variables, then X2+Y , sin(X)+

√
Y are also random variables.
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8.2 Mathematical expectation

The most useful concept on random variables is its expectation, which, intuitively, is its “average value”
over all outcomes in the sample space (weighted by their probabilities). Formally,

Definition 8.2 Let X be a random variable over a probability space {Ω,F ,Pr}. The (mathematical)
expectation of X is defined as

E[X] =
∑

ω∈Ω

Pr[ω] ·X(ω),

provided that the series “converges absolutely,” i.e.,
∑

ω∈Ω Pr[ω] · |X(ω)| < ∞. Otherwise, we simply
say that the expectation does not exist.

Since the sample space Ω is finite or countable, the sum in the above definition is well-defined.
As examples, consider the expectation of the number X1 of points gained by Henry if he does not

pay off Tom’s gain (see (18)), we have

E[X1] = 2 · 1
4
+ 2 · 1

8
+ 2 · 1

16
+ 1 · 1

16
+ 2 · 1

8
+ 2 · 1

16
+ 1 · 1

16
+ 2 · 1

16
+ 1 · 1

16
+ 0 · 1

8
=

25

16
= 1.5625.

On the other hand, the expectation of the number X2 of “net points” gained by Henry is (see (19)):

E[X2] = 2· 1
4
+1· 1

8
+0· 1

16
+(−2)· 1

16
+1· 1

8
+0· 1

16
+(−2)· 1

16
+0· 1

16
+(−2)· 1

16
+(−3)· 1

8
=

3

16
= 0.1875.

We give another example. Let E be an event, and let IE be the random variable that is the indicator
of E. Since IE(ω) is equal to 1 for ω ∈ E and is equal to 0 for ω 6∈ E, we have

E[IE ] =
∑

ω∈Ω

Pr[ω] · IE(ω) =
∑

ω∈E

Pr[ω] · 1 =
∑

ω∈E

Pr[ω] = Pr[E].

The expectation of a random variable X can also be given by the following equivalent definition,
which sometimes simplifies the mathematical analysis. Let r(X) = {t | X(ω) = t for some ω} be the
range of the random variable X:

E[X] =
∑

t∈r(X)

t · Pr[X = t], (20)

where in Pr[X = t] we have interpreted X = t as the event that consists of all outcomes ω that satisfy
X(ω) = t. Note that since the sample space Ω is either finite or countable, the range r(X) of the random
variable X is also finite or countable. Thus, the summation in the above definition is well-defined. The
formula can be proved directly based on the original definition for expectation:

E[X] =
∑

ω∈Ω

Pr[ω] ·X(ω) =
∑

t∈r(X)





∑

ω:X(ω)=t

Pr[ω] ·X(ω)





=
∑

t∈r(X)





∑

ω:X(ω)=t

Pr[ω] · t



 =
∑

t∈r(X)

t





∑

ω:X(ω)=t

Pr[ω]



 =
∑

t∈r(X)

t · Pr[X = t].

Again here the validity of regrouping the summation terms in the second equality in the above derivation
is ensured by the assumption of the absolute convergence of the series.

8.3 Linearity of expectation

The linearity of expectations is probably the most useful trick when we play with probability and
analyze randomized algorithms.
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Theorem 8.1 (Linearity of Expectation) Let X1, X2, . . ., Xn be random variables on a probability

space (Ω,F ,Pr), and let c1, c2, . . ., cn be any constants. Then E[
∑n

i=1 ciXi] =
∑n

i=1 ciE[Xi].

proof. First note that Y =
∑n

i=1 ciXi is a random variable. The theorem can be easily proved
based on the definition of expectations:

E[Y ] = E

[

n
∑

i=1

ciXi

]

=
∑

ω∈Ω

Pr[ω] ·
(

n
∑

i=1

ciXi(ω)

)

=

n
∑

i=1

(

ci
∑

ω∈Ω

(Pr[ω] ·Xi(ω))

)

=

n
∑

i=1

ciE[Xi].

Note that in the third equality we were able to exchange the summations because of the assumption of
the absolute convergence of the series.

The most interesting (and most useful) property of Linearity of Expectation is that it enforces no

conditions on the relationship among the random variables X1, X2, . . ., Xn. In particular, they do not
have to be “independent” (this concept for random variables will be defined later). In fact, it does not
even exclude the possibility that some of them are identical such as X1 = X2.

We give a simple application for Linearity of Expectation. Recall the Max-Cut problem, which
is for a given undirected graph G = (V,E), to construct a partition of the vertices of G so that the
number of crossing edges is maximized. Recall that the Max-Cut problem is NP-hard.

Let n and m be the number of vertices and the number of edges in the graph G, respectively. Our
sample space consists of the 2n partitions (L,R) of the vertex set V of G, V = L∪R and L∩R = ∅, each
with a probability 1/2n. For each edge e in G, we define a random variable Xe(L,R) on each partition
(L,R) of V such that if the edge e is crossing (i.e., if one end of e is in L and the other end of e is in R)
then Xe = 1, otherwise Xe = 0. Therefore, for a partition (L,R), if we let Y (L,R) =

∑

e∈E Xe(L,R),
then Y (L,R) is the total number of crossing edges for the partition (L,R). Now let us compute the
expectation for Y (using Linearity of Expectation). First of all, it is easy to verify that for each edge
e in G, we have E[Xe] = 1/2. This gives:

E[Y ] = E

[

∑

e∈E

Xe

]

=
∑

e∈E

E[Xe]. =
∑

e∈E

1

2
=

m

2
.

So a random partition of V , which can be implemented by randomly placing each vertex either in L
or in R with an equal probability 1/2, will result in a cut (L,R) whose expected size is one half of the
total number of edges in the graph G. Such a cut may not be a maximum cut, but is not very bad: its
size is at least one half of the size of a maximum cut!

The above randomized algorithm is an approximation algorithm for the NP-hard problem Max-

Cut, which produces a cut with an expected approximation ratio bounded by 2 (the approximation
ratio is defined to be the ratio of the size of a maximum cut over the size of the approximated cut).
Given the fact that optimally solving an NP-hard problem is difficult, this very simple and efficient
(linear-time) randomized algorithm produces a result whose expected quality can be measured specifi-
cally. Surprisingly, this simple algorithm stood as the best approximation algorithms for the Max-Cut

problem for more than 20 years! A very well-known open problem then was whether the approximation
ratio of this trivial algorithm could be improved. This was eventually answered positively, again with
a randomized algorithm for the problem (we will talk about this if time permits).

8.4 More on random variables and expectations

Based on the independence of events, we can define the independence of random variables.

Definition 8.3 Two random variables X and Y are independent if for all pairs (u, v) of real numbers,
Pr[(X = u) ∩ (Y = v)] = Pr[X = u] · Pr[Y = v].

In the above definition, all “(X = u) ∩ (Y = v)”, “X = u”, and “Y = v” are events defined based
on random variables. The definition can be extended to more than two random variables.
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Definition 8.4 Random variables X1, X2, . . ., Xk are independent if for any real numbers u1, u2, . . .,
uk, Pr[(X1 = u1) ∩ (X2 = u2) ∩ · · · ∩ (Xk = uk)] = Pr[X1 = u1] · Pr[X2 = u2] · · · · · Pr[Xk = uk].

Recall that Linearity of Expectation holds true for sums of any set of random variables, no matter
whether the random variables are independent or not. On the other hand, it is easy to see that a similar
result is not true for products of random variables. For example, let X and Y be random variables on
the probability space {0, 1} with Pr[0] = Pr[1] = 1/2 such that X(0) = 0, X(1) = 1, Y (0) = 1, and
Y (1) = 0. Then E[XY ] = 0 while E[X] ·E[Y ] = 1/4. However, for independent random variables, such
a result holds true:

Lemma 8.2 Let X1, X2, . . ., Xk be independent random variables. Then

E[X1X2 · · ·Xk] = E[X1] ·E[X2] · · · · ·E[Xk].

proof. We first prove the lemma for the case k = 2, based on the definition of expectations as given
in (20). Let r(X1) and r(X2) be the ranges of the random variables X1 and X2, respectively.

E[X1X2] =
∑

u1∈r(X1),u2∈r(X2)

Pr[(X1 = u1) ∩ (X2 = u2)] · (u1u2)

=
∑

u1∈r(X1),u2∈r(X2)

Pr[X1 = u1] · Pr[X2 = u2] · (u1u2)

=
∑

u2∈r(X2)

∑

u1∈r(X1)

Pr[X1 = u1] · Pr[X2 = u2] · (u1u2)

=
∑

u2∈r(X2)

(Pr[X2 = u2] · u2)





∑

u1∈r(X1)

Pr[X1 = u1] · u1





=
∑

u2∈r(X2)

(Pr[X2 = u2] · u2) ·E[X1]

= E[X1]
∑

u2∈r(X2)

(Pr[X2 = u2] · u2)

= E[X1] ·E[X2].

The second equality has used the independence of the random variables X1 and X2. Now the case for
general k > 2 can be proved using induction on k.

We can also define the conditional expectations for random variables based on conditional probability.

Definition 8.5 Let F be an event with Pr[F ] 6= 0, and let X be a random variable. Then the
conditional expectation of X given F is defined as E[X | F ] =

∑

ω∈Ω Pr[ω | F ] ·X(ω).

A number of results for unconditional expectations also hold true for conditional expectations. We
list some of them here but leave the verifications to the students.

1. The conditional expectation can also be defined based on the range r(X) of the random variable:

E[X | F ] =
∑

t∈r(X)

Pr[X = t | F ] · t.

2. Linearity of Expectation: for any set of random variables X1, X2, . . ., Xk:

E[(X1 +X2 + · · ·+Xk) | F ] = E[X1 | F ] +E[X2 | F ] + · · ·+E[Xk | F ].

We also have the following results relating the conditional and unconditional expectations. We say
that a collection of events F1, F2, . . ., Fk is a partition of the sample space Ω if Ω = ∪k

i=1Fi and
Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ k.
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Lemma 8.3 Let F1, F2, . . ., Fk be a partition of the sample space. Then for any random variable X:

E[X] =

k
∑

i=1

Pr[Fi] ·E[X | Fi].

proof. By definition, E[X | Fi] =
∑

ω∈Ω Pr[ω | Fi] ·X(ω). Thus, we have

k
∑

i=1

Pr[Fi] ·E[X | Fi] =

k
∑

i=1

Pr[Fi] ·
(

∑

ω∈Ω

Pr[ω | Fi] ·X(ω)

)

=
∑

ω∈Ω

X(ω)

k
∑

i=1

(Pr[Fi] · Pr[ω | Fi]).

Since F1, F2, . . ., Fk make a partition of the sample space,
∑k

i=1(Pr[Fi] · Pr[ω | Fi]) = Pr[ω]. Now the
last expression above becomes

∑

ω∈Ω X(ω) · Pr[ω] = E[X]. This completes the proof.

For a random variable Y , let r(Y ) be the range of Y . For each t ∈ r(Y ), define Yt = {ω | Y (ω) = t}.
Then {Yt | t ∈ r(Y )} surely makes a partition of the sample space. Recall that the event Yt can also
be written as “Y = t”. Thus, we have the following corollary for Lemma 8.3.

Corollary 8.4 Let X and Y be random variables, and let r(Y ) be the range of Y . Then

E[X] =
∑

t∈r(Y )

Pr[Y = t] ·E[X | Y = t].

8.5 Caution on expectation

The expectation of a random variable tells the “average” value of the random variable. If you interpret
this as “this is the value I can expect, very often, to get at least (or to get at most, depending on your
objective),” then you can be very wrong.

Image the following game offered to you by a gambler Mr. X. Suppose you toss six fair coins (at the
same time), if all show head, then Mr. X pays you $100, otherwise, you pay Mr. X $1. Do you want to
play?

Before you make a decision, you probably want to use the expectation to estimate your winning
possibilities. There are totally 26 = 64 outcomes, you win $100 with a probability 1/64 and lose $1
with a probability 63/64. Let Y be the random variable for the amount you win, then

E[Y ] = 100 · 1

64
+ (−1) · 63

64
=

37

64
≈ 0.58.

Thus, you seems in favor since you would win about $0.58 “in average”, so you should play. On the
other hand, if you ask the question “what is my chance to win at least $0.58?” then you answer is

Pr[Y ≥ 0.58] =
1

64
< 2%,

since the only way for you to win at least $0.58 is to win $100. Therefore, in this case, the expectation
does not seem to tell you much. A statement based on the expectation such as “you would win about
$0.58 in average” seems quite encouraging, but the statement based on your winning possibility such as
“the probability that you win $0.58 is less than 2%” is kind of discouraging (you can make a statement
that is equivalent to this one but sounds even more discouraging, such as “the probability that you
lose less than $1 is smaller than 2%.”) . Now if you look at Mr. X’s side, the statement based on the
expectation as “Mr. X will lose about $0.58 in average” is discouraging while the statement based on his
winning possibility as “Mr. X will win $1 with a probability larger than 98%” sounds quite attractive.

This seems terrible: the expectation may tell very title information for what we are interested in.
Consider the example on the Max-Cut problem given in subsection 8.3, where we showed that the
expected size µ = E[X] of a random cut of the given graph G = (V,E) is m/2, where m is the number
of edges in G, which is at least one half of the size of a maximum cut of the graph. Now the above
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example on the gambling game shows that it might be possible that even though the “average size” of
a random cut is large (at least one half of a maximum cut), most random cuts of the graph G could
have very small size. Therefore, by randomly picking a cut for G, even repeatedly, we might have a
very small probability to find one that has a large size. In particular, how many times should we run
the randomized algorithm in order to find a large cut, with a good probability?

Recall that the sample space for our randomized algorithm for Max-Cut is the collection of all
partitions of the vertex set V of the graph G. Define E≥m/2 to be the event that the number of crossing
edges in a partition is at least m/2 (i.e., E≥m/2 is the set of those partitions in which the number of
crossing edges is at least m/2), and E≤m/2−1 to be the event that the number of crossing edges in a
partition is at most m/2−1. The events E≥m/2 and E≤m/2−1 obviously make a partition of the sample
space. Recall that X is the random variable that is equal to the total number of crossing edges in a
partition of V . By Lemma 8.3, we have

m

2
= E[X] = Pr[E≥m/2] ·E[X | E≥m/2] + Pr[E≤m/2−1] ·E[X | E≤m/2−1]

= Pr[E≥m/2] ·E[X | E≥m/2] + (1− Pr[E≥m/2]) ·E[X | E≤m/2−1]

≤ Pr[E≥m/2] ·m+ (1− Pr[E≥m/2]) · (
m

2
− 1). (21)

In deriving the last inequality, we have used the fact X ≤ m (unconditionally) so E[X | E≥m/2] ≤ m,
and the fact that under the event E≤m/2−1, X ≤ m/2− 1 so E[X | E≤m/2−1] ≤ m/2− 1. Solving the
above inequality for Pr[E≥m/2], we get

Pr[E≥m/2] ≥
1

1 +m/2
.

Therefore, by running the randomized algorithm for the Max-Cut problem t ·m times, where t is a
reasonably large constant (e.g., t = 5), we should have a very hight probability (e.g., ≥ 99.99%) that
one of these executions produces a cut whose size is at least m/2.

The above analysis suggested a randomized algorithm for the Max-Cut problem, which runs in
time O(m2), and produces, with a high probability, a cut of size at least one half of a maximum cut.

A critical observation on the above analysis is that in the case of the randomized algorithm for the
Max-Cut problem, the random variable X has an upper bound 2 ·E[X] on its value (look at the above
analysis and convince yourself why this is crucial in deriving the last inequality in (21)), which is not
much larger than the expected value E[X] thus prevents the random variable X from having values
far below the expected value E[X] for a large portion of the outcomes: there would not be sufficient
outcomes with large X-values (the X-values are bounded by 2 · E[X]) to “balance” this large number
of outcomes with small X-values to make the “average” value equal to E[X].

On the other hand, for the example of the gambling game, the expected value of the random variable
Y for your winning strategy is 0.58, while the highest value of the random variable Y is 100, which is
much larger than the expected value 0.58. Thus, a single outcome with a large Y -value would allow
many outcomes to have their Y -values much smaller than the expected value E[Y ]. This explains in
that example why the random variable Y has a small probability to reach its expected value.

This observation has been used in the development of the famous Markov Inequality, which we will
discuss in the next lecture.
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