
CSCE-658 Randomized Algorithms

Lecture #7, February 25, 2016

Lecturer: Professor Jianer Chen

7 Randomized divide-and-conquer based on solutions

Divide-and-conquer is a well-known method for developing efficient algorithms. A divide-and-conquer
process divides a given instance into smaller instances, solves the smaller instances recursively, and
finally “merges” the solutions for the smaller instances into a solution for the original instance. Well-
known examples include divide-and-conquer sorting algorithms such as MergeSort and QuickSort.

In this section, we study a new randomized algorithmic technique based on divide-and-conquer that
turns out to be very effective for solving parameterized NP-hard problems. Many parameterized NP-
hard problems use the size of solutions as their parameter. Therefore, here we are looking for “small”
solutions. In order to reduce the recursion depth of the divide-and-conquer process thus speedup the
computation, the new method works by recursively dividing the solution, instead of the input instance.

Of course, an immediate question then arises: we are looking for a solution, which certainly implies
that the solution is unknown in advance, how do we effectively divide an unknown object?

This is a place where randomization comes to help again. We show that when the size of the solution
is small, there is a reasonable probability that the unknown solution is divided in the desired way when
the input instance is randomly divided. Therefore, by repeatedly applying random dividing on the
instance, we have a good probability to get an instance dividing that has the solution divided nicely.

We again use the max-Path problem as an example to illustrate the technique. At the end, we will
mention briefly how the technique is used to solve other NP-hard problems.

7.1 Randomized divide-and-conquer

Recall that the max-Path problem is to construct a k-path of the maximum weight in an undirected
and weighted graph. Fix an undirected and weighted graph G = (V,E). For any subset V ′ of vertices
in G, denote by G[V ′] the subgraph of G induced by V ′ (i.e., G[V ′] is the graph that has vertex
set V ′ and contains exactly those edges in G that have both ends in V ′). The concatenation of
two paths ρ1 = 〈v1, . . . , vl〉 and ρ2 = 〈w1, . . . , wh〉 in G, where [vl, w1] is an edge in G, is the path
〈v1, . . . , vl, w1 . . . , wh〉. We denote by ρ∅ the special 0-path (i.e., the empty path containing no vertex),
and define that the concatenation of ρ∅ and any path ρ gives the path ρ. An h-path ρ is also called a
(v, h)-path if v is an end vertex of ρ.

We first give a high-level description of the algorithm. Fix a k-path ρk of the maximum weight in the
graph G. Suppose that we randomly partition the vertex set V of G into two subsets VL and VR. Note
that if the partition (VL, VR) has the “first-half” of the path ρk entirely in the induced subgraph G[VL]
and the “second-half” of the path ρk entirely in the induced subgraph G[VR], then we can apply the
algorithm recursively to construct the maximum (k/2)-paths in G[VL] and in G[VR], then concatenate
the (k/2)-paths in G[VL] and the (k/2)-paths in G[VR] to make k-paths in G. Of course, the success
of this process depends on the probability that the random partition (VL, VR) of V divides the path
ρk into two “right” halves, which, luckily, turns out to be enough by the probability analysis we will
present later. Thus, the general framework of our algorithm looks as follows.

1. repeat sufficiently many times do
randomly partition the vertices of G into VL and VR;
recursively work on the induced subgraphs G[VL] and G[VR];
concatenate (k/2)-paths in G[VL] and (k/2)-paths in G[VR] to make k-paths in G;

2. return the largest k-path constructed in step 1.

The remaining task is to take care of how the (k/2)-paths of maximum weight in the induced
subgraphs G[Vl] and G[VR] are recorded and organized, and how these (k/2)-paths are concatenated to

31

make k-paths of maximum weight in the original graph G. There is a straightforward implementation
for this: for each vertex pair (v1, v2) in G[VL], record the (k/2)-path of the maximum weight whose
two ends are v1 and v2. Similarly organized the (k/2)-paths in the graph G[VR]. Now to construct
the k-paths in G, we consider each edge [v, w] in G, where v ∈ VL and w ∈ VR, and concatenate the
(k/2)-path in G[VL] that has v as an end and the (k/2)-path in G[VR] that has w as an end. With
this process we can surely construct the k-path of the maximum weight between each vertex pair in G.
The drawback of this process is its running time and memory space: it takes time O(kn2m) and space
O(kn2). In the following, we present an algorithm that uses significantly less time and space.

Let Pl be a set of l-paths in G, and let V ′ ⊆ V such that no vertex in V ′ is on any path in Pl. A
(v, h)-path is in Pl ⊙ V ′ if v ∈ V ′ and ρ is a concatenation of an l-path in Pl and an (h − l)-path in
G[V ′]. In particular, for P0 = {ρ∅}, any (v, 1)-path in P0 ⊙ V ′ consists of the single vertex v in V ′.

On a set Pl of l-paths in G and V ′ ⊆ V , where Pl contains at most one (v, l)-path for each vertex
v, and no vertex in V ′ is on any path in Pl, our algorithm FindPaths(Pl, V

′, h) returns a set Pl+h of
(l + h)-paths in Pl ⊙ V ′. In particular, the algorithm FindPaths({ρ∅}, V, k) returns a set of k-paths
in the graph G. The detailed algorithm is given as follows.

Algorithm 13 FindPaths(Pl, V
′, h)

Input: a set Pl of l-paths; V
′ ⊆ V and no vertex in V ′ is on a path in Pl; an integer h ≥ 1;

Output: a set Pl+h of (l + h)-paths in Pl ⊙ V ′;

1. Pl+h = ∅;
2. if h = 1 then

2.1. if Pl = {ρ∅} then Pl+1 contains a (u, 1)-path for each vertex u ∈ V ′; return Pl+1;
2.2. else for each (w, l)-path ρl in Pl and each u ∈ V ′, where [w, u] is an edge in G, do
2.3. concatenate ρl and u to make a (u, l + 1)-path ρl+1 in Pl ⊙ V ′;
2.4. if Pl+1 contains no (u, l + 1)-path then add ρl+1 to Pl+1;
2.5. else if the (u, l + 1)-path ρ′l+1 in Pl+1 has a weight smaller than that of ρl+1

2.6. then replace ρ′l+1 in Pl+1 by ρl+1;
2.7. return Pl+1;
3. loop 3 · 2h times do
3.1. randomly partition the vertices in V ′ into two parts VL and VR;
3.2. PL

l+⌈h/2⌉ = FindPaths(Pl, VL, ⌈h/2⌉);

3.3. if PL
l+⌈h/2⌉ 6= ∅ then

3.4. PR
l+h = FindPaths(PL

l+⌈h/2⌉, VR, ⌊h/2⌋);

3.5. for each (u, l + h)-path ρl+h in PR
l+h do

3.6. if Pl+h contains no (u, l + h)-path in Pl ⊙ V ′ then add ρl+h to Pl+h;
3.7. else if the (u, l + h)-path ρ′l+h in Pl+h has a weight smaller than that of ρl+h

3.8. then replace ρ′l+h in Pl+h by ρl+h;
4. return Pl+h.

We first study the success probability of the algorithm FindPaths. We have the following theorem
(where e = 2.718 · · · is the base of the natural logarithm):

Theorem 7.1 Let Pl be a set of l-paths and let V ′ be a vertex subset that contains no vertex in any
path in Pl. Let v be any vertex in V ′ with (v, l + h)-paths existing in Pl ⊙ V ′. Then with a probability
larger than 1−1/e, the algorithm FindPaths(Pl, V

′, h) returns a set Pl+h that contains a (v, l+h)-path
in Pl ⊙ V ′ whose weight is the maximum over all (v, l + h)-paths in Pl ⊙ V ′.

proof. First note that by steps 2.4–2.6 and steps 3.6–3.8, if the set Pl+h contains a (v, l + h)-path
ρ, then ρ must be a valid (v, l+ h)-path in Pl ⊙ V ′. Therefore, if there is no (v, l+ h)-path in Pl ⊙ V ′,
then the set Pl+h returned by the algorithm cannot contain a (v, l + h)-path.

In the following discussion, by a “maximum-weighted (v, l + h)-path in Pl ⊙ V ′”, we really mean a
(v, l+h)-path in Pl⊙V ′ whose weight is the maximum over all (v, l+h)-paths in Pl⊙V ′. In particular,
this does not imply that the path has the maximum weight over all (l + h)-paths in the graph G.

32

By the assumptions of the theorem, there are (v, l + h)-paths in Pl ⊙ V ′. Thus, let

ρl+h = 〈u1, . . . , ul, w1, . . . , wh〉

be a maximum-weighted (v, l + h)-path in Pl ⊙ V ′, where wh = v, 〈u1, . . . , ul〉 is an l-path in Pl, and
w1, . . ., wh are vertices in V ′. We prove the theorem by induction on h.

Consider the case h = 1. If Pl = {ρ∅} (in this case l = 0), then the set Pl+1 returned by step
2.1 contains the (unique) (v, 1)-path in Pl ⊙ V ′, which is obviously a maximum weighted (v, 1)-path in
Pl⊙V ′. If l > 0, then when the (ul, l)-path 〈u1, . . . , ul〉 in Pl and the vertex wh = w1 = v are examined
in step 2.2, the path ρl+1 is constructed in step 2.3, so steps 2.4–2.6 ensure that a maximum-weighted
(v, l+1)-path in Pl⊙V ′ is included in the set Pl+1. Therefore, for the case of h = 1, with a probability
1, the set Pl+h returned by the algorithm contains a maximum-weighted (v, l+h)-path in Pl⊙V ′. This
proves the theorem for the case h = 1.

Now suppose that h > 1. Let h1 = ⌈h/2⌉. We rewrite the path ρl+h as

ρl+h = 〈u1, . . . , ul, w1, . . . , wh1
, . . . , wh〉,

Let ED be the event that step 3.1 includes the vertices w1, . . ., wh1
in VL and includes the vertices

wh1+1, . . ., wh in VR. Let EL be the event that the recursive call in step 3.2 returns a set PL
l+h1

that
contains a maximum-weighted (wh1

, l+h1)-path in Pl⊙VL, and let ER be the event that the recursive
call in step 3.4 returns a set PR

l+h that contains a maximum-weighted (wh, l + h)-path in PL
l+h1

⊙ VR.
Note that the events ED, EL, and ER are not independent. For example, if the vertex wh1

is not in
the set VL (thus, the event ED fails), then Pr[EL] = 0.

We consider what happens under the event ED∩EL∩ER. Under the event ED, the vertices w1, . . .,
wh1

are in VL and the vertices wh1+1, . . ., wh are in VR. Thus, the path ρl+h1
= 〈u1, . . . , ul, w1, . . . , wh1

〉
is a (wh1

, l + h1)-path in Pl ⊙ VL. The path ρl+h1
must be a maximum-weighted (wh1

, l + h1)-path in
Pl ⊙ VL – otherwise, a maximum-weighted (wh1

, l + h1)-path ρ′l+h1
in Pl ⊙ VL concatenated with the

path 〈wh1+1 . . . , wh〉 would give a (wh, l+h)-path in Pl⊙V ′ whose weight is larger than the maximum-
weighted (wh, l+h)-path ρl+h in Pl⊙V ′ (note that under the event ED, none of the vertices wh1+1, . . .,
wh can be on ρ′l+h1

). Now since the event EL assumes that the set PL
l+h1

returned in step 3.2 contains

a maximum-weighted (wh1
, l+h1)-path in Pl⊙VL, under the event ED ∩EL, the set P

L
l+h1

returned in
step 3.2 contains a maximum-weighted (wh1

, l+h1)-path ρl+h1
in Pl⊙VL whose weight is equal to that

of ρl+h1
(note that ρl+h1

and ρl+h1
are not necessarily the same). Now the path ρl+h1

concatenated
with the path 〈wh1+1, . . . , wh〉 is a (wh, (l+ h1) + ⌊h/2⌋)-path in PL

l+h1
⊙ VR. Since all paths in the set

PL
l+h1

are (l+h1)-paths in Pl⊙VL, every (wh, (l+h1)+ ⌊h/2⌋)-path in PL
l+h1

⊙VR is a (wh, l+h)-path

in Pl⊙V ′. In particular, the (wh, (l+ h1)+ ⌊h/2⌋)-path in PL
l+h1

⊙VR that is the concatenation of the

(wh1
, l+h1)-path ρl+h1

in PL
l+h1

and the path 〈wh1
, . . . , wh〉 is a (wh, l+h)-path in Pl⊙V ′ whose weight

is equal to that of ρl+h. This implies that a maximum-weighted (wh, (l+h1)+⌊h/2⌋)-path in PL
l+h1

⊙VR

is also a maximum-weighted (wh, l+h)-path in Pl⊙V ′. Now since the event ER assumes that step 3.4
returns a set PR

l+h that contains a maximum-weighted (wh, (l+h1)+ ⌊h/2⌋)-path in PL
l+h1

⊙VR, under

the event ED∪EL∪ER, the set P
R
h+h returned in step 3.4 contains a maximum-weighted (wh, l+h)-path

in Pl ⊙ V ′, which is added to the set Pl+h in steps 3.5-3.8. In conclusion, for the given vertex wh = v,
under the event ED ∩ EL ∩ ER, the set Pl+h contains a maximum-weighted (v, l + h)-path in Pl ⊙ V ′.

Let E be the event that in an execution of steps 3.1-3.4, the set PR
l+h constructed in step 3.4 contains

a maximum-weighted (v, l+ h)-path in Pl ⊙ V ′, then by the above discussion, ED ∪EL ∪ER ⊆ E. So,

Pr[E] ≥ Pr[ED ∪ EL ∪ ER] = Pr[ED] · Pr[EL | ED] · Pr[ER | ED ∩ EL]. (14)

Because we randomly partition the vertex set V ′, each vertex on the path ρl+h has an equal probability
(= 1/2) to be placed either in VL or in VR. Thus, Pr[ED] = 1/2h. Under the event ED, the (wh1

, l+h1)-
path ρl+h1

is a (wh1
, l+h1)-path in Pl⊙VL. Thus, the condition in the theorem (i.e., there are (wh1

, l+
h1)-paths in Pl ⊙ VL) is satisfied for the instance (Pl, VL, h1) so we can apply the inductive hypothesis
on h1 < h, which gives Pr[EL | ED] > 1 − 1/e. Finally, under the event ED ∩ EL, the path ρl+h is a
(wh, (l+ h1)+ ⌊h/2⌋)-path in PL

l+h1
⊙VR (and every maximum-weighted (wh, (l+ h1)+ ⌊h/2⌋)-path in

33

PL
l+h1

⊙ VR is a maximum-weighted (wh, l + h)-path in Pl ⊙ V ′), thus the instance (PL
l+h1

, VR, ⌊h/2⌋)

satisfies the condition of the theorem (i.e., there are (wh, (l + h1) + ⌊h/2⌋)-paths in PL
l+h1

⊙ VR), so
we can again apply the inductive hypothesis on ⌊h/2⌋ < h, which gives Pr[ER | ED ∩ EL] > 1 − 1/e.
Bringing all these into (14), we get

Pr[E] ≥ Pr[ED] · Pr[EL | ED] · Pr[ER | ED ∩ EL] >
1

2h
·

(

1−
1

e

)2

>
1

3 · 2h
.

By steps 3.5-3.8 of the algorithm, the set Pl+h is updated based on PR
l+h. Thus, the above analysis

shows that with a probability larger than 1/(3 · 2h), each execution of the steps 3.1-3.8 includes a
maximum-weighted (v, l+ h)-path in Pl ⊙ V ′ in the set Pl+h. Since step 3 of the algorithm loops 3 · 2h

times, the overall probability that the algorithm returns a set Pl+h that contains a maximum-weighted
(v, l + h)-path in Pl ⊙ V ′ is larger than

1−

(

1−
1

3 · 2h

)3·2h

> 1−
1

e
.

Thus, the inductive proof goes through, and the theorem gets proved.

We study the time and space complexity of the algorithm FindPaths in the next subsection.

7.2 The complexity of the algorithm FindPaths

Fix an input graph G. Suppose that G has n vertices and q edges. Let m be the size of the input
(Pl, V

′, h) to the algorithm FindPaths, which is of the order O(l · n+ q).
We first study the space complexity of the algorithm. A recursive call to FindPaths(Pl, V

′, h)
uses O(n(l + h)) extra space for storing the sets PL

l+h1
, PR

l+h, and Pl+h (note that for each vertex v
in the graph G, each of these sets contains at most one (v, ∗)-path). Since the recursive depth of the
algorithm FindPaths(Pl, V

′, h) is O(log h), we conclude that the space complexity of the algorithm
FindPaths(Pl, V

′, h) is O(n(l + h) log h + q). In particular, if we apply the algorithm on an instance
(G, k) of the max-Path problem, then the space complexity of the algorithm is O(nk log k+ q). Recall
that the straightforward implementation we suggested for the problem uses O(kn2) space.

We now consider the time complexity of the algorithm FindPaths. Let T (h,m) be the running
time of the algorithm FindPaths(Pl, V

′, h), where m is the size of the instance (Pl, V
′, h). Clearly we

have T (1,m) = O(m). From the algorithm, we have the following recurrence relation when h > 1:

T (h,m) ≤ 3 · 2h[cm+ T (⌈h/2⌉,m) + T (⌊h/2⌋,m)], (15)

where c > 0 is a constant. We show how to solve this recurrence equation.

Lemma 7.2 The function T (h,m) in (15) satisfies T (h,m) ≤ c04
hh3m, where c0 is a constant.

proof. To simplify our descriptions, we assume that h is a power of 2. Thus, the recurrence relation
(15) can be written as

T (h,m) ≤ 3 · 2h[cm+ 2T (h/2,m)] = 3c · 2hm+ 6 · 2hT (h/2,m). (16)

Replacing with T (h/2,m) ≤ 3c · 2h/2m+ 6 · 2h/2T (h/22,m), we get

T (h,m) ≤ 3c · 2hm+ 6 · 3c · 2h+h/2m+ 62 · 2h+h/2T (h/22,m).

For a general integer p, 0 < p ≤ log h, we can derive:

T (h,m) ≤ 3cm · 2h
p−1
∑

i=0

6i2h−h/2i + 6p22h−h/2p−1

T (h/2p,m). (17)

34

Now let p = log h in (17), and recall that T (1,m) ≤ c′m for a constant c′, we get

T (h,m) ≤ 4h6log hm(c+ c′) = 4hhlog 6m(c+ c′) ≤ c04
hh3m,

where c0 = c+ c′ is a constant, and note that log 6 < 3. This completes the proof of the lemma.

We can conclude with

Theorem 7.3 The algorithm FindPaths(Pl, V
′, h) runs in O(4hh3m) time and O(n(l + h) log h+ q)

space on a graph of n vertices and q edges, where m = O(l ·n+ q) is the size of the instance (Pl, V
′, h).

7.3 Final remarks

To amplify the success probability of the algorithm FindPaths for constructing a maximum-weighted
(v, k)-path for a vertex v in a graph G = (V,E), we simply run the algorithm FindPaths({ρ∅}, V, k) t
times for a sufficiently large constant t, and pick the largest (v, k)-path constructed in this process. By
Theorem 7.1, with a probability less than 1/e, an execution of the algorithm FindPaths({ρ∅}, V, k)
fails in finding a maximum-weighted (v, k)-path in G. Therefore, the probability that all t executions
of the algorithm fail in finding a maximum-weighted (v, k)-path in G is less than 1/et. In conclusion,
the probability that this process finds a maximum-weighted (v, k)-path in G is larger than 1−1/et. For
instance, if we let t = 10, then the probability that this process finds a maximum-weighted (v, k)-path
in G is larger than 0.9999. Note that this does not change the asymptotic order of the time and space
complexity of the algorithm.

To solve the max-Path problem, for an instance (G, k) of max-Path, where G = (V,E), we again
run the algorithm FindPaths({ρ∅}, V, k) t times. However, now for each execution we pick from its
output P0+k the (v, k)-path for some vertex v whose weight is the largest among all paths in P0+k.
The output of this process is the k-path with the largest weight among all those we picked for the
t executions of the algorithm. Note that this process may pick k-paths with no common end in two
executions of the algorithm. Therefore, we need to justify the validity of this process since we do not
know which vertex is an end of a maximum-weighted k-path in the graph G. Let w0 be an end of a
maximum-weighted k-path in G. Note that Theorem 7.1 holds true for any fixed vertex v. In particular,
with a probability larger than 1− 1/e, the set P0+k returned by an execution of the algorithm contains
a maximum-weighted (w0, k)-path ρ (in {ρ∅} ⊙ V), so the probability that all the t executions of the
algorithm fail in finding a maximum-weighted (w0, k)-path is less than 1/et, and this process returns a
maximum-weighted (w0, k)-path ρ with a probability larger than 1− 1/et (even we do not know what
w0 is). But since there is a (w0, k)-path that is a maximum-weighted k-path in G, the path ρ must
also be a maximum-weighted k-path in G. Thus, with such a probability, the path whose weight is the
largest among all executions of the algorithm is a maximum-weighted k-path in G.

Theorem 7.4 There is a randomized algorithm of time O(4kk3m) and space O(nk log k + m) that
solves the max-Path problem with an arbitrarily small error bound.

Theorem 7.4 gives an algorithm for the max-Path problem that improves the algorithm PathPerm

for the problem, which is based on random permutation and has time complexity O(k(n+m)k!), as well
as the algorithm ColorPath for the problem, which is based on color-coding and has time complexity
O(5.44k(n+m)) (see previous section).

The algorithm FindPaths can also be used directly to solve the max-Path problem on directed
graphs, as long as we interpret the edge [w, u] in step 2.2 of the algorithm as a directed edge from w to u.
The proof of Theorem 7.1 can be applied to directed graphs with no change. Based on the randomized
divide-and-conquer technique presented in this section, we can develop faster parameterized algorithms
for other NP-hard problems, such as the 3D-Matching problem and the 3-Set Packing problem.
See reference [3].

Currently, the algorithm in Theorem 7.4 is still the fastest algorithm for solving the max-Path

problem on weighted graphs. For unweighted graphs, Williams [19] has developed an O(2knO(1))
randomized algorithm, which is based on algebraic techniques.

35

