
CSCE-658 Randomized Algorithms

Lecture #6, February 18, 2016

Lecturer: Professor Jianer Chen

6 The path problem and color-coding

In this section, we first study the Path problem. The problem is NP-hard because the well-known NP-
hard problems Hamiltonian-Path and Traveling-Salesman are special cases of the Path problem.
Recent research in areas such as bioinformatics has shown interests in solving the Path problem for
short paths. For instance, the research in biological pathways is interested in paths of length no more
than 10 in a graph [18]. If we are only interested in short paths, then it becomes possible that the Path
problem is solved effectively. More specifically, we study parameterized algorithms for the Path problem
for paths of length bounded by a small integer k, with running time of the form O(f(k)nc), where c
is a constant. The challenge here is to develop parameterized algorithms where the function f(k) is as
small as possible. Since the problem is NP-hard, we would not expect that f(k) is a polynomial of k.

We first present a simple randomized algorithm for the parameterized Path problem, based on
random permutation. The technique by itself is interesting and has other applications. Then we
introduce the technique of color-coding, which is a more recent randomization technique and has proven
to be very useful, in particular for developing faster algorithms for NP-hard problems.

6.1 The max-Path problem

A path in a graph G is a sequence {w1, w2, . . . , wk} of vertices such that for each i, [wi, wi+1] is an edge
in G. The path is simple if no vertex repeats in the sequence. If G is a directed graph, then we require
that [wi, wi+1] be a directed edge from wi to wi+1, written as 〈wi, wi+1〉. A k-path in G is a simple
path of k vertices. If the graph G is weighted, then a maximum k-path is a k-path in G whose weight
is the maximum over all k-paths in G. In this section, we will be focused on the following problem:

max-Path. Given an undirected and weighted graph G, and an integer k, construct a
maximum k-path, or report no k-paths exist in G.

There is an unweighted version of the problem, where we simply treat all edges as having unit weight,
and the problem is asking the existence of k-paths in the graph G. When k = n, the unweighted
version becomes the Hamiltonian-Path problem. Moreover, the Traveling-Salesman problem (on
undirected graphs) can be easily reduced to the weighted version of the problem where we let k = n.
Finally, the problem can also be defined on directed graphs. The techniques we describe in this section
on undirected graphs can be used to solve the problem on directed graphs.

We first observe that the max-Path problem on directed acyclic graphs is actually easy, which can
be solved using the following algorithm based on dynamic programming.

Algorithm 9 DagPath

Input: a directed, acyclic, and weighted graph Ĝ, and an integer k;
Output: a maximum k-path in Ĝ;

1. topologically sort the vertices of Ĝ: v1, v2, . . ., vn;
2. for i = 1 to n− 1 do

W [i, 1] = 0; X[i, 1] = ∗;
for h = 2 to k do {W [i, h] = −∞; X[i, h] = ∗};

3. for i = 1 to n− 1 do

for each edge 〈vi, vj〉 do
for h = 1 to k − 1 do

if W [i, h] 6= −∞ and W [i, h] + wt[vi, vj] > W [j;h+ 1]
then W [j, h+ 1] = W [i, h] + wt[vi, vj]; X[j, h+ 1] = i;

4. The vertex vt with the largest W [t, k] is the last vertex of a maximum k-path.

25

We give some explanations on the algorithm DagPath. Each vertex vi is associated with 2k values
W [i, h] and X[i, h], where 1 ≤ h ≤ k, where W [i, h] is the weight of the largest h-path P (h, vi) ending
at vi that has been discovered so far, and X[i, h] is the vertex just before vi on the path P (h, vi).
Initially at step 2, every vertex vi only sees the 1-path starting and ending at itself, so it correctly sets
W [i, 1] = 0. Since the 1-path has only one vertex, we let X[i, 1] = ∗, which will be irrelevant. We use
W [i, h] = −∞ for h > 1 to indicate that no h-path ending at vi has been discovered, yet.

Since the vertices are topologically sorted (so edges only go from vertices of smaller index to vertices
of larger index), in the i-loop in step 3 when we reach the vertex vi, all vertices on any path ending at vi
have been processed, soW [i, h] andX[i, h], for 1 ≤ h ≤ k, record correctly the information for maximum
h-path ending at vi, for all h ≤ k. Then the process in step 3 extends the correct information on vi to
later vertices via the edges from vi. Therefore, at the end of step 3, the information for the maximum
h-path ending at each vertex, for all h ≤ k, is obtained, and the vertex vt with the largest W [t, k] is the
ending vertex of a maximum k-path in the graph G. This maximum k-path {w1, w2, . . . , wk} can be
re-constructed, starting from vt, by following the links given by the array X[∗, ∗] of previous vertices
on the path: wk = vt, wk−1 = X[t, k] = vi, wk−2 = X[i, k − 1] = vj , wk−3 = X[j, k − 2], and so on.

The running time of the algorithm DagPath is O(k(n + m)), where n and m are the number of
vertices and the number of edges in the graph Ĝ, respectively.

Now we return back to our original max-Path problem on undirected and weighted graphs. Un-
fortunately, there seems no easy way to convert an undirected graph G into an “equivalent” directed
acyclic graph, even when the undirected graph G itself has no cycles (e.g., G is a tree). Here is where
randomization proves useful.

Suppose that the vertex set of the undirected graphG is V = {v1, v2, . . . , vn}. Let π = (v′1, v
′

2, . . . , v
′

n)
be a permutation of {v1, v2, . . . , vn}. if we convert each edge [v′i, v

′

j] of G, where i < j, into a directed
edge 〈v′i, v′j〉 from v′i to v′j (and keep the same edge weight), then G becomes a directly acyclic graph

Ĝπ. The paths in Ĝπ have the following properties:

P1. Every (directed) path in Ĝπ corresponds to a path of the same length and same weight in G;
P2. If a maximum k-path in G becomes a (directed) path in Ĝπ, then every maximum k-path in

the directed acyclic graph Ĝπ corresponds to a maximum k-path in the undirected graph G.

Now let Pk = (w1, w1, . . . , wk) be a maximum k-path in the undirected graph G. We say that the
path Pk follows the order of a permutation π = (v′1, v

′

2, . . . , v
′

n) of {v1, v2, . . . , vn} if for every i, wi+1

appears after wi in the sequence (v′1, v
′

2, . . . , v
′

n), and we say that the path Pk follows the reversed order

of π if for every i, wi+1 appears before wi in the sequence π. It is easy to see that if the maximum
k-path Pk follows the order or the reversed order of the permutation π, then by Properties P1-P1, a
maximum k-path in the directed acyclic graph Ĝπ corresponds to a maximum k-path in the undirected
graph G. Now a maximum k-path in the directed acyclic graph Ĝπ can be constructed efficiently by
the algorithm DagPath!

Therefore, the problem now is reduced to the problem of finding a good permutation of the vertices
in the graph G. If we randomly pick a permutation of the vertices in G, what is the probability that
the permutation is good?

Consider the sequence of n positions. Fix k positions of them, which will be the positions for the
vertices of the k-path Pk to be placed in order or in the reversed order. There are (n − k)! different
permutations for the n− k vertices that are not on the path Pk. Therefore, for these k positions, there
are 2(n − k)! permutations of {v1, v2, . . . , vn} for which the path Pk follows the order or the reversed
order. Since there are

(

n

k

)

ways to pick k positions out of the n positions, we conclude that the total
number of permutations for which the path Pk follows the order or the reversed order is equal to

(

n

k

)

(n− k)! =
n!

k!
.

Therefore, among the n! permutations of {v1, v2, . . . , vn}, n!/k! are good from which we can construct
a maximum k-path of the undirected graph G using the algorithm DagPath. Thus, if we randomly
pick a permutation of {v1, v2, . . . , vn}, then with a probability (n!/k!)/n! = 1/k!, we will pick a good
permutation. This gives the following randomized algorithm for the max-Path problem:

26

Algorithm 10 PathPerm

Input: an undirected graph G, and an integer k;
Output: a maximum k-path in G;

1. repeat t · k! times
1.1 randomly pick a permutation π of {v1, v2, . . . , vn};
1.2 construct the graph Ĝπ;
1.3 call DagPath to construct a maximum k-path in Ĝπ;
2. if no call in step 1.3 returns a k-path
2.1 then return(“no k-path”);
2.2 else return the k-path with the largest weight among those constructed in step 1.3.

First note that if the undirected graph G has no k-path, then no permutation π can make the
directed acyclic graph Ĝπ to have a k-path. Therefore, in this case, the algorithm PathPerm always
returns at step 2.1 with a correct conclusion. On the other hand, if G has k-paths, then we fix any
maximum k-path Pk in G. As we discussed above, a random permutation π has a probability 1/k! to
have Pk follow the order or the reversed order of π. For such a permutation π, step 1.3 of the algorithm,
which applies DagPath on the directed acyclic graph Ĝπ, will return a maximum k-path of Ĝπ that,
by properties P1-P2, corresponds to a maximum k-path of the undirected graph G. The probability
that none of the t · k! random permutations picked in step 1.1 is good is bounded by

(

1− 1

k!

)t·k!

<
1

et
.

In particular, if we let t = 10, then the algorithm PathPerm solves the max-Path problem with a
probability at least 0.99999.

For any fixed constant t (e.g., t = 10), the running time of the randomized algorithm PathPerm

is O(k(n+m)k!), which is acceptable when the value of k is small.
Before we end this subsection, we illustrate how step 1.1 of the algorithm PathPerm picks a random

permutation of {v1, v2, . . . , vn}. Presumably, each permutation of {v1, v2, . . . , vn} should have an equal
probability 1/n! to be picked. This can be implemented as followings. We simply pick a first vertex
among all n vertices of the graph G, then pick a vertex from the remaining n−1 vertices, and then pick
a vertex from the remaining n−2 vertices, and so on. Let π = (v′1, v

′

2, . . . , v
′

n) be any given permutation
of {v1, v2, . . . , vn}. We study the probability that this particular permutation π is picked. For each i,
1 ≤ i ≤ n, let Ei be the event that the i-th picked vertex is v′i, then the probability that this particular
permutation π is picked is equal to

Pr

[

n
⋂

i=1

Ei

]

= Pr

[

En

∣

∣

∣

n−1
⋂

i=1

Ei

]

· Pr
[

En−1

∣

∣

∣

n−2
⋂

i=1

Ei

]

· · · · · Pr
[

Eh

∣

∣

∣

h−1
⋂

i=1

Ei

]

· · · · · Pr[E2 | E1] · Pr[E1]

= 1 · 1
2
· · · · · 1

n− h+ 1
· · · · · 1

n− 1
· 1
n

=
1

n!
,

where we have used the simple fact that if the i-th picked vertex is v′i, for 1 ≤ i ≤ h − 1, then the
probability that v′h is the h-th picked vertex among the remaining vertices {v′h, . . . , v′n} is 1/(n−h+1),

i.e., Pr[Eh |
⋂h−1

i=1
Ei] = 1/(n−h+1). Thus, for each permutation π of {v1, v2, . . . , vn}, this process picks

π with a probability 1/n!, thus, it has an equal probability to pick any permutation of {v1, v2, . . . , vn}.

6.2 Color-coding

Color-coding is a technique proposed by Alon, Yuster, and Zwick [1]. The technique has proven very
useful in dealing with problems in which one is interested in effectively finding a small subset with

27

certain desired properties from a large pool. The general principle of color-coding is similar to that
of the method of random permutation as we described in the previous subsection for max-Path: we
first apply randomized methods that, with a sufficient probability, assign a special structure to a given
problem instance so that the desired subset, which is hidden in the instance and unknown to the
algorithm, can be identified more easily based on the special structure, then by taking advantage of the
special structure, we apply (deterministic) techniques such as dynamical programming to identify the
desired subset of our interests.

We will again use the max-Path as an example. Let G be an undirected and weighted graph, whose
vertex set is V = {v1, v2, . . . , vn}. We first examine why finding a maximum k-path is difficult when
we apply a natural searching scheme. Suppose that we start from the vertex w1, and try to find a
maximum k-path starting from w1. Assume somehow we have successfully extended the path from w1

to the h-th vertex wh in the path, h < k (this is certainly good if h = 1). Because we are looking for
simple paths, for further extending the path from wh, we need to answer the following critical question:

What vertices have been used in the partial path from w1 to wh?

We could record the vertices of the maximum h-path from w1 to wh. However, since there can be
more than one such maximum h-paths, recording a single such maximum h-path may not be good: if
we recorded a wrong maximum h-path from w1 to wh containing some vertices that are necessary for
further extending the path from wh to wk to get a maximum k-path, then we would not be able to get
a maximum k-path. Thus, we seem to have to record all maximum h-paths from w1 to wh and consider
a possible extension from each of them. Observing that for two such maximum h-paths that use the
same set of h vertices, we only have to record one since we are only interested in which vertices have
been used and do not care where they are used in the partial path, we can save some space: we only
need to record each of those subsets of h vertices that makes a maximum h-path from w1 to wh.

Since there are
(

n

h

)

subsets of h vertices in the graph G, where
(

n

h

)

≈ nh when h is significantly
smaller than n, this would use a large amount of space (even when h is equal to, say, 10). Moreover,
when we consider extending the path from the vertex wh, we may need to look at each of these subsets,
taking time at least Ω(nh), also unacceptable.

The coloring-coding technique proposed an idea to take off this obstacle. For this, we first use k
colors to color the vertices of the graph G, by which we mean a function f (a k-coloring) that maps
the vertices of G to a set Ck = {c1, c2, . . . , ck} of k colors, where f(vi) is called the color of the vertex
vi (under the k-coloring f). We say that a path P in G is properly colored if no two vertices in P are
colored with the same color (of course, this implies that the path P contains at most k vertices).

Let f be a k-coloring of the vertices of G such that there is a maximum k-path Pk = (w1, w2, . . . , wk)
in G that is properly colored. Let us reconsider the above searching scheme and suppose our goal is
to find the path Pk. Again assume that we have successfully extended from w1 to the h-th vertex wh

in the path Pk. Observe that now only the colors used on the partial path of Pk from w1 to wh need
to be recorded: since Pk is properly colored, only those vertices whose colors have not been used in
the partial path from w1 to wh need to be considered. Therefore, instead of recording the subsets of h
vertices in the set of n vertices in the graph G that can make maximum h-paths from w1 to wh (there
can be up to

(

n

h

)

of them), now we only have to record at most
(

k

h

)

subsets of h colors in the set Ck of

k colors that can make properly colored h-paths of maximum weight from w1 to wh. The number
(

k

h

)

is significantly smaller than
(

n

h

)

when k is small compared with n, thus will significantly save the space
and time in the above searching scheme.

This idea is implemented in the algorithm ColorPath given below that on a k-colored graph G
finds a properly colored k-path of the maximum weight. For each vertex vi in G, we keep a collection
A[vi] of triples of the form (S, ω, x)i (where the subscript of the parentheses indicates the vertex to
which the triple belongs). Each triple (S, ω, x)i in A[vi], where S is subset of the color set Ck, records a
properly colored path P that satisfies the following conditions: (1) P ends at the vertex vi; (2) P uses
exactly those colors in S (thus, the color f(vi) of vi is in S, and P is a |S|-path); (3) the weight of P is
ω; and (4) x is the vertex just before vi on the path P . Naturally, the triple ({f(vi)}, 0, ∗)i is contained
in the collection A[vi], representing the 1-path P1 starting and ending at the vertex vi. Since the path
P1 has no vertex before vi, the third component of the triple is marked by an irrelevant symbol ∗.

28

Algorithm 11 ColorPath

Input: an undirected weighted graph G that is k-colored, and an integer k;
Output: a properly colored k-path of maximum weight in G;

1. for each vertex vi of G do A[vi] = { ({f(vi)}, 0, ∗)i };
2. for h = 1 to k − 1 do

for each vertex vi of G do

for each edge [vi, vj] in G do

for each (S, ω, x)i in A[vi], where S is an h-subset of Ck and f(vj) 6∈ S do

if (S ∪ {f(vj)}, ω′, x′)j is not in A[vj] or
(S ∪ {f(vj)}, ω′, x′)j in A[vj] satisfies ω

′ < ω +wt(vi, vj)
then change (S ∪ {f(vj)}, ω′, x′)j in A[vj] to (S ∪ {f(vj)}, ω′′, vi)j ,

where ω′′ = ω +wt(vi, vj);
3. The vertex vt such that the triple (Ck, ω, ∗)t in A[vt] has the largest ω is the last

vertex of a properly colored k-path of maximum weight.

The correctness of the algorithm ColorPath is given by the following lemma.

Lemma 6.1 Let Pk = (w1, w2, . . . , wk) be a properly colored k-path of the maximum weight in the

k-colored graph G. For each h, 0 ≤ h ≤ k − 1, after the h-th execution of the h-loop in step 2 of

the algorithm ColorPath, the collection A[wh+1] for the vertex wh+1 contains a triple for a properly

colored (h+1)-path that uses the colors f(w1), f(w2), . . ., f(wh+1) and has weight equal to that of the

partial path (w1, w2, . . . , wh+1).

proof. The lemma can be proved by induction on h. For h = 0, the lemma is ensured because step
1 of the algorithm. Now consider the case for h > 0. By the inductive hypothesis, after the (h− 1)-st
execution of the loop of step 2 in the algorithm, the collection A[wh] for the vertex wh contains a triple
(S, ω, x)h for a properly colored h-path Ph such that S = {f(w1), f(w2), . . . , f(wh)}, and ω is equal to
the weight of the partial path (w1, w2, . . . , wh).

During the h-th execution, when the edge [wh, wh+1] and the trip (S, ω, x)h in A[wh] are examined,
if the triple (S ∪ {f(wh+1)}, ω′, x′)j does not exist in A[wh+1] or it exists but ω

′ < ω + wt(wh, wh+1),
then by the algorithm, the collection A[wh+1] will contain a triple (S′, ω′′, vi)h+1, where S′ = S ∪
{f(wh+1)} = {f(w1), . . . , f(wh), f(wh+1)}, ω′′ = ω + wt(wh, wh+1) = the weight of the partial path
(w1, w2, . . . , wh+1), giving the (h+ 1)-path that is the concatenation of the h-path given by the triple
(S, ω, x)h in A[wh] and the edge [wh, wh+1]. This completes the induction.

Note that a triple (S, ω, x) is added to the collection A[vi] for a vertex vi only if we have seen the
corresponding path. Thus, the collection A[wh] cannot contain a triple ({f(w1), f(w2), . . . , f(wh)}, ω, x)
where ω is larger than the weight of the h-path (w1, w2, . . . , wh) – otherwise, there would be a properly
colored k-path whose weight is larger than that of Pk. Therefore, once a triple corresponding to the
path (w1, w2, . . . , wh) is established in the collection A[wh] for the vertex wh, it will stay there forever.

This completes the proof of the lemma.

By Lemma 6.1, after step 2, some vertices (in particular vertex wk) will have their collection con-
taining a triple that gives a properly colored k-path whose weight is equal to that of Pk, i.e., a properly
colored k-path of the maximum weight. Step 3 of the algorithm will return such a path. Also note that
the returned path can be re-constructed based on the third component of the triples.

Since the collection A[vi] for a vertex vi contains at most 2k triples, corresponding to the 2k subsets
of the color set Ck, it is easy to see that the algorithm ColorPath runs in time O(2kk(n+m)). This
is a significant improvement over the running time O(k(n+m)k!) of the algorithm PathPerm that is
based on random permutation.

However, we are not done, yet. The graph given by the problem max-Path is not colored. How do
we color the graph so that a maximum k-path in the graph is properly colored?

Again we make use of randomization. So our question is: if we randomly color the n vertices of a
given undirected and weighted graph G using k colors, what is the probability that a maximum k-path
in G is properly colored?

29

By the fundamental counting principle, there are total kn different ways to k-color the n vertices
of the graph G. Let Pk = (w1, w2, . . . , wk) is a fixed maximum k-path in G. There are k! k-colorings
that properly color the k vertices in Pk. For each proper k-coloring of the k vertices in Pk, there are
kn−k ways to k-color the n− k vertices that are not in Pk. Therefore, indeed, there are totally kn−kk!
different k-colorings that properly color the path Pk. In summary, the ratio of the number of k-colorings
that properly color the path Pk over the total number of k-colorings is

kn−kk!

kn
=

k!

kk
≥
√
2πk(k/e)k

kk
=

√
2πk

ek
>

1

ek
,

here we have used Stirling’s formula (Theorem 5.1), and e = 2.718 · · · is the base of the natural
logarithm. Therefore, if we randomly color the vertices of the graph G, we will have a probability at
least 1/ek to color the maximum k-path Pk properly.

Now we are ready for the final algorithm for the problem max-Path based on color-coding.

Algorithm 12 PathCC

Input: an undirected and weighted graph G, and an integer k;
Output: a maximum k-path in G;

1. repeat tek times
randomly k-color the vertices of the graph G, let the k-colored graph be G′;
call ColorPath on G′ to construct a properly colored k-path of maximum weight;

2. if no call above to ColorPath returns a k-path
then return(“no k-path”);
else return the k-path with the largest weight among those constructed in step 1.

Based on analysis similar to that given for the algorithm PathPerm in the previous subsection, we
have the following remarks:

• If the graph G has no k-path, then the algorithm PathCC always reports correctly;

• If the graph G contains k-paths, then with a probability at least 1− (1− 1/ek)te
k

> 1− 1/et, the
algorithm returns a maximum k-path of the graph G. In particular, if we set t = 10, then the
algorithm has a success probabablity larger than 0.99999.

• Since the algorithmColorPath runs in time O(2kk(n+m)), the time complexity of the algorithm
PathCC is O(t(2e)kk(n+m)), which is bounded by O(5.44k(n+m)) for any constant t, which
is an improvement over the algorithm PathPerm, which is based on random permutation and
has running time O(k(n+m)k!): for k ≥ 15, k! ≥ 5.44k.

• Step 1 for uniformly picking a k-coloring of the graph G over all k-colorings for G can be imple-
mented by first picking any color from the k colors, with an equal probability, for the first vertex,
then picking a color from the k colors with an equal probability for the second vertex, and so on.

30

