
CSCE-658 Randomized Algorithms

Lecture #4, February 2, 2016

Lecturer: Professor Jianer Chen

4 Does randomness help solving NP-hard problems?

We have seen that randomness can help improving computational efficiency. A natural question is ”can
randomness help solving NP-complete problems?”

The answer to this question depends on how you interpret the word “help.” If you meant whether
randomness helps developing faster algorithms for NP-complete problems, then the answer is “some-
times yes.” On the other hand, if you meant whether randomized algorithms can solve NP-complete
problems in polynomial time, then the answer is “probably not.”

In this section, we study the answers to the question for both versions.

4.1 Faster algorithms for NP-complete problems via randomness

In previous sections, we have seen how randomized algorithms solve the Min-Cut problem, where we
look for a partition of the vertices in a graph into two parts that minimizes the number of edges that
cross the two parts. We can formulate a maximization version of this problem, i.e., we try to find a
partition of the graph vertices into two parts such that the number of edges that cross the two parts is
maximized. In the literature, this problem is named the Max-Cut problem, which is one of the most
famous NP-complete problems that plays an important role in the study of computational optimization
and complexity theory, and has received extensively study.

The Max-Cut problem can be re-formulated as a set problem, which can be called the 2-Set
Splitting problem and is given as follows: Given a base set U , and a collection C of 2-subsets of U
(a 2-subset of U is a subset of two elements in U), construct a partition of the base set U that splits
the maximum number of 2-subsets in C. Here we say that a subset S is split by the partition if the
subset S contains elements in both parts of the partition. Note that the 2-Set Splitting problem is
identical to the Max-Cut problem if we take the base set U as the graph vertex set, and take each
2-subset {u,w} in the collection C as an edge [u,w] in the graph.

A more general version of this set problem, where we allow the collection C to contain arbitrary
subsets of the base set U , is called the Set Splitting problem, which is also a well-known NP-complete
problem. In this section, we study how randomized algorithms solve the parameterized version of this
problem. Formally, the problem we are focused on is defined as follows:

Set Splitting. Given a base set U , a collection C of subsets of U , and a parameter k,
either construct a partition of U that splits at least k subsets in C, or report that no such
a partition exists.

Note that the Set Splitting problem is identical to the Max-Cut problem on hypergraphs where
we treat each element in U as a vertex and each subset in C as a hyperedge.

Since the Set Splitting problem is NP-hard, we do not expect a polynomial-time algorithm for
the problem. On the other hand, it has become increasingly interesting in the current algorithmic
research to study parameterized algorithms for NP-hard problems, where we measure the complexity
of the algorithms in terms of both the input length n and a parameter k. In particular, for the Set
Splitting problem as defined above, we look for algorithms solving the problem whose running time is
bounded by O(f(k)nc), where f(k) is an arbitrary function of the parameter k that is independent of the
input size n, and c is a small constant. If we believe that P 6= NP, then we cannot expect that f(k) be a
polynomial of k. However, in many applications, the value of the parameter k is small, which will make
this kind of algorithms useful, even f(k) is not a polynomial of k. In particular, there has been extensive
research along this direction, focusing on such parameterized algorithms for which the function f(k) in
the complexity is as small as possible. For the Set Splitting problem, previous research has generated

14



a sequence of improved parameterized algorithms, with running times O(72knO(1)), O(8knO(1)), and
O(2.68knO(1)), respectively (see the introductory section and the references in [4] for a quick survey on
this line of research), These algorithms are deterministic algorithms.

Consider the following randomized algorithm for the Set Splitting problem:

Algorithm 7 RandomPartition
Input: A base set U , a collection C of subsets of U , and an integer k
Output: Either return a partition of U that splits at least k subsets in C,

or report no such a partition exists.

1. randomly partition U into (L,R);
2. if (L,R) splits at least k subsets in C

then output all split subsets in C;
else report no such a partition exists.

This is a trivial linear-time algorithm, where “randomly partition U into (L,R)” means that each
element in U is placed in L or R with an equal probability 1/2. Now what is the probability that this
algorithm is correct?

If there is no partition of U that can splits k or more subsets in C, then certainly the algorithm
RandomPartition will correctly report this fact. Thus, we only need to consider the case in which
there is a partition that splits at least k subsets in C. Pick any such partition (L,R), and fix k subsets
S1, . . ., Sk that are split by (L,R). Moreover, for each subset Si, fix two elements ai and bi such
that ai ∈ L and bi ∈ R. Note that for certain i and j, we may have ai = aj or bi = bj , but the sets
{a1, . . . , ak} and {b1, . . . , bk} are disjoint.

Since each element in U has a probability 1/2 to be placed in L or in R, the probability that all
elements in {a1, . . . , ak} are placed in L and all elements in {b1, . . . , bk} are placed in R is 1/2h ≥
1/22k = 1/4k, where h ≤ 2k is the total number of different elements in {a1, . . . , ak} ∪ {b1, . . . , bk}.
Such a partition certainly splits at least k subsets in C. In conclusion, if partitions of U that split
at least k subsets of C exist, then the algorithm RandomPartition returns such a partition with a
probability at least 1/4k.

In fact, the algorithm RandomPartition does better than this, which can be derived by the
following more precise analysis. For this, we construct a bipartite graph H, which has the h different
elements in {a1, . . . , ak} ∪ {b1, . . . , bk} as its vertices, and k edges [ai, bi] for i = 1, . . . , k (thus, each
edge represents a subset that is split by the partition (L,R)). Note that since for certain i and j we
may have ai = aj or bi = bj , the graph H may have fewer than 2k vertices. Moreover, certain pair of
vertices may be connected by multiple edges (this happens if for some i and j we have both ai = aj
and bi = bj).

The graph H may not be connected. Let H1, . . ., Hr be the connected components of H. For each
Hi, let hi and ki be the number of vertices and the number of edges in Hi, respectively. Since Hi

is connected, hi ≤ ki + 1. A vertex in Hi that comes from the set {a1, . . . , ak} (resp. from the set
{b1, . . . , bk}) will be called an a-vertex (resp. a b-vertex). Similar to the above analysis, the probability
that a random partition (L,R) places all a-vertices of Hi in L and all b-vertices of Hi in R is equal to
1/2hi . Moreover, note that if a partition (L′, R′) places all a-vertices of Hi in R′ and all b-vertices of
Hi in L′, then the ki subsets corresponding to the ki edges of Hi also get split. Since the event that all
a-vertices of Hi are placed in L and all b-vertices of Hi are placed in R and the event that all a-vertices
of Hi are placed in R and all b-vertices of Hi are placed in L are disjoint, we conclude that a random
partition splits the ki subsets corresponding to the ki edges of Hi with a probability at least

1

2hi

+
1

2hi

=
2

2hi

=
1

2hi−1
≥

1

2ki

,

where we have used the inequality hi ≤ ki + 1. Now since for two connected components Hi and Hj

of H, the vertex set of Hi and the vertex set of Hj are disjoint, the event that a random partition
splits the ki subsets that correspond to the ki edges of Hi and the event that it splits the kj subsets
that correspond to the kj edges of Hj are independent for all i 6= j. Therefore, the probability that a

15



random partition splits the ki subsets that correspond to the ki edges of Hi for all i = 1, . . . , r, i.e., the
probability that a random partition splits all the k subsets S1, . . ., Sk in C, is at least

1

2k1

·
1

2k2

· · ·
1

2kr

=
1

2k1+k2+···+kr

=
1

2k
.

This proves the following lemma.

Lemma 4.1 If there is a partition of the base set U that splits at least k subsets in C, then the algorithm
RandomPartiton returns such a partition with a probability at least 1/2k. If there is no such a
partition, then the algorithm correctly reports this fact (with a probability 1).

Now we can simply use the standard trick to amplify the success probability.

Algorithm 8 SplittingSet
Input: A base set U , a collection C of subsets of U , and an integer k
Output: Either return a partition of U that splits at least k subsets in C,

or report no such a partition exists.

1. repeat 2kt times
1.1 call the algorithm RandomPartition on U , C, and k;
1.2 if step 1.1 returns a partition (L,R) that splits at least k subsets in C
1.3 then return the partition (L,R); stop.
2. return(“no such a partition”).

Theorem 4.2 If there are partitions of the set U that splits at least k subsets in C, then the algorithm
SplittingSet returns such a partition with a probability at least 1−1/et. If there is no such a partition,
then the algorithm correctly reports this fact (with a probability 1). The algorithm SplittingSet runs
in time O(2km), where m is the size of the input instance.

proof. The algorithm SplittingSet fails in finding an existing partition that splits at least k
subsets in C only if all calls to RandomPartition fail in finding such a partition. By Lemma 4.1,
RandomPartition fails in finding the partition with a probability bounded by 1 − 1/2k. Thus, the
probability that all 2kt calls in step 1.1 fail is bounded by

(

1−
1

2k

)2kt

≤
1

et
.

where we have used Lemma 1.6. This shows that the algorithm SplittingSet has a success proba-
bility at least 1 − 1/et. Moreover, since RandomPartition runs in time O(m), the running time of
SplittingSet is bounded by O(2km). This proves the theorem.

Note that the algorithm SplittingSet is faster than all those deterministic algorithms we men-
tioned at the beginning of this subsection.

The algorithm SplittingSet actually does more than just finding a partition of the base set U that
splits k subsets in C. In fact, if we look for a partition that splits k subsets in C where the subsets are
required to satisfy any specified properties, then, by the analysis given above, our algorithm will find
such a partition with a high probability. For example, the algorithm can be used to solve the weighted
version of the Set Splitting problem. We leave the detailed examination of the algorithm for this
version to the reader.

4.2 Randomized algorithms would not overcome NP-hardness

Consider the question ‘’can randomized algorithms help solving NP-complete problems in polynomial
time.” Let Q be an NP-complete problem. Recall that by definition, Q is a decision problem whose
instances require a yes/no answer. Suppose that Q is solved by a randomized algorithm A. First we

16



need to clarify what do we mean by “a randomized algorithm solving a decision problem.” In fact, there
are many subtle details that we must address when we study the complexity of randomized algorithms
and complexity classes defined based on randomized algorithms.

First, how do we implement a random step in an algorithm? In previous sections, we simply assume
that we can pick an object “randomly” in a pre-specified pool of certain size, or more often, that we
can generate a random integer in a specified range. However, on low-level machine operations, our
computers can only handle binary bits. Thus, we will assume that our algorithms can only randomly
generate a random bit from {0, 1} with an equal probability (i.e., 1/2). Note that picking a random
integer from an interval of size m can be implemented by generating ⌈logm⌉ binary random bits. This
implementation is not entirely satisfactory. For example, how do you randomly generate “one out
of three” using binary random bits? Nevertheless, we will take this model, and refer the readers to
reference [7] for deeper studies towards the model of randomized computation.

Under this assumption, the execution of a randomized algorithm A on an input x can be modeled
by a binary tree TA(x) in which the root represents the beginning of the algorithm, each internal node
v with two children corresponds to generating a random binary bit 0/1, with an equal probability going
to the two children, and each leaf, labeled yes/no, corresponds to the outcome of a particular execution
of the randomized algorithm A on the input x. With different outcomes of the generated random bits,
the corresponding executions of the randomized algorithm A on x are different. Each execution of the
randomized algorithm A on the input x corresponds to a path P from the root to a leaf in the tree
TA(x), which at each internal node v randomly generated a binary bit whose outcome (0/1) instructed
the algorithm A to move to the child of v that is on the path P . Thus, the depth of the tree TA(x)
corresponds to the maximum number of random bits that are generated by the algorithm A on the
input x, which is bounded by the running time of the algorithm A on x (in the worst case). Note that
the tree TA(x) only models the random steps of the algorithm A, and ignores all other details in the
computation. There can be fairly non-trivial (deterministic) computations between two random-bit
generating steps (which corresponds to the edge between an internal node and one of its children).

If we let the root of the tree TA(x) be at level 0, then the probability of reaching a node at level
h in the tree TA(x) is 1/2h. The probability that the algorithm A on the input x returns ‘yes’ (resp.
‘no’) is equal to the sum of all the probabilities of the leaves that are labeled ‘yes’ (resp. ‘no’).

For different instances x1 and x2, the corresponding trees TA(x1) and TA(x2) may differ: in particu-
lar, the algorithm A on input x1 may terminates at a node v with a definite decision (thus, v is a leaf in
TA(x1)), while on input x2, the algorithm A at node v may need to continue its process and generating
further random bits (thus v is an internal node in TA(x2). To make the tree TA(x) “oblivious” to all
inputs x of length n, we modify the algorithm A as follows:

(1) pick any upper bound p(n) for the number of random bits generated by the algorithm A on any
input of length n (e.g., p(n) is an upper bound of the running time of A on inputs of length n);

(2) during the execution of the algorithm A, record the number of generated random bits;
(3) if the algorithm A decides to terminate with a decision D (= yes/no) before generating p(n)

random bits, modify the algorithm so that it continues by repeatedly generating random bits until it
generates exactly p(n) random bits, then the algorithm terminates with the same decision D.

The above modification of the algorithm A on input x corresponds to replacing each leaf v at level
h with h < p(n) in the tree TA(x) with a complete binary tree rooted at v that has depth p(n)− h and
has all its leaves labeled by the decision that is the label of the node v in the original tree TA(x). In
particular, the binary tree for the modified algorithm is a complete binary tree of depth p(n), which
is independent of the content of the input x (as long as the length of x is n). It is easy to verify that
the modified algorithm is “equivalent” to the original algorithm, in the sense that on the same input
x, they have the same probability to return ‘yes’. Moreover, the modified algorithm does change the
asymptotic bound of the running time.

Finally, for a decision problem Q, we assume a fixed encoding for the instances of Q over an alphabet
Σ of c symbols, where c is a fixed constant (at the machine level encoding, we have Σ = {0, 1} and
c = 2). In particular, the total number of instances of length n under the encoding is bounded by cn.

We will assume the above formulations in the following discussion. In particular, for a randomized

17



algorithm A that solves a decision problemQ in time t(n), the corresponding binary tree TA for instances
of length n is a complete binary tree of depth bounded by t(n), where the instances are encoded by
a fixed encoding scheme such that the total number of instances of length n is bounded by cn for a
constant c ≥ 2.

Now we can define the following complexity classes based on randomized algorithms.

Definition 4.1 (One-Side Error Class RP) A decision problem Q is in the class RP if there is a
polynomial-time randomized algorithm A such that (1) for each yes-instance x of Q, the algorithm A
returns a ‘yes’ with a probability at least 1/2; and (2) for each no-instance x of Q, the algorithm A
returns a ‘no’ with probability 1. Such an algorithm A will be called an RP-algorithm.

Consider the Min-Cut problem in Section 1. We can formulate a decision version of the problem:

Min-Cut(D). Given graph G and integer k, is the size of a min-cut of G bounded by k?

We make simple modifications on Algorithm 3 in Section 1, as follows: (1) let t = 1; (2) if any
call to Contraction in step 1 returns a cut of size bounded by k then return ‘yes’; (3) step 2 of the
algorithm is changed to “return ‘no’.” Now for a yes-instance (G, k) of Min-Cut(D) (i.e., the size of
a min-cut of G is bounded by k), Theorem 1.3 in Section 1 says that the algorithm will return a ‘yes’
with a probability at least 1 − 1/e > 1/2. On the other hand, for a no-instance (G, k), the algorithm
will always return a ‘no’ in step 2 (thus returns a ‘no’ with probability 1). This modified algorithm is
thus an RP-algorithm and shows that the problem Min-Cut(D) is in the class RP.

A more general randomized model is defined as follows.

Definition 4.2 (Two-Side Error Class BPP) A decision problem Q is in the class BPP if there is
a plynomial-time randomized algorithm A such that (1) for each yes-instance x of Q, the algorithm A
returns a ‘yes’ with a probability at least 3/4; and (2) for each no-instance x of Q, the algorithm A
returns a ‘no’ with probability at least 3/4. Such an algorithm A will be called a BPP-algorithm.

Note that if a problem Q is in RP, then it is in BPP. This can be seen as follows: let A be an
RP-algorithm for Q that on a yes-instance returns a ‘yes’ with a probability at least 1/2, and on a
no-instance, returns a ‘no’ with probability 1. Now let A′ be the randomized algorithm that runs A
twice, and returns a ‘yes’ if and only if any of the two executions of A returns a ‘yes.’ Note that
for a no-instance, A′ still returns a ‘no’ with probability 1 (thus ≥ 3/4). On the other hand, for a
yes-instance, since the algorithm A returns a ‘no’ with a probability ≤ 1/2, and the two executions of
the algorithm A in A′ are independent, the probability that A′ returns a ‘no’ (i.e., the probability that
both executions of A returns ‘no’) is bounded by (1/2)2 = 1/4. Thus, on a yes-instance, the algorithm
A′ returns a ‘yes’ with a probability at least 3/4. The algorithm A′ for Q shows that the problem Q is
in BPP. Thus, RP ⊆ BPP.

Remark 1. In the definition of the class RP, for a yes-instance, the condition that the RP-algorithm
A returns a ‘yes’ with a probability ≥ 1/2 can be replaced by the condition that the algorithm A
returns a ‘yes’ with a probability ≥ c for any constant c > 0. In fact, if c < 1/2, then by repeating the
algorithm A ⌈(−1)/ log(1 − c)⌉ times (note that log(1 − c) < 0), we will get an RP-algorithm that on
a yes-instance returns a ‘yes’ with a probability ≥ 1/2.

Remark 2. In the definition of the class BPP, the condition that the success probability of the BPP-
algorithm A is at least 3/4 can be replaced by the condition that the success probability is at least
1/2+ ǫ for a fixed constant ǫ > 0. This can be shown via Chernoff bound, which will be discussed later.

Since BPP-algorithms are more powerful than RP-algorithms, we will study the consequence that
a BPP-algorithm solves an NP-complete problem. We first note that the success probability 3/4 in the
definition of a BPP-algorithm can be replaced with a constant that is strictly larger than 3/4. To see
this, let A be a BPP-algorithm that solves a decision problem Q. Let A′ be the randomized algorithm
that runs A three times and takes the majority outcomes as its output (i.e., A′ returns ‘yes’ if and only

18



if at least two of the three executions of A return ‘yes’). Since the algorithm A has a failure probability
≤ 1/4, the failure probability of the algorithm A′ is equal to

Pr[A fails twice and succeeds once] + Pr[A fails all three times]

= 3(Pr[A fails])2Pr[A succeeds] + (Pr[A fails])3

≤ 3 · (1/4)2 + (1/4)3

= 13/64

The factor 3 in the second line is because the successful execution of A can appear in three different
places during the execution sequence. Moreover, we have used the fact Pr[A succeeds] ≤ 1. Thus, the
success probability of the algorithm A′ is at least 1− 13/64 = 51/64 > 3/4.

Now we have the following theorem that is important when we want to amplify the success proba-
bility of a BPP-algorithm.

Theorem 4.3 Let Q be a problem in BPP. Then for any polynomial q(n), there is a BPP-algorithm
that solves the problem Q with a probability at least 1− 1/2q(n) on instances of length n.

proof. By the assumption, there is a BPP-algorithm A1 that runs in time O(p(n)) for a polynomial
p and solves the problem Q. By the remark above, we can assume that the success probability of the
algorithm A1 is at least 51/64. Thus its failure probability is bounded by 13/64.

We develop a new randomized algorithm A2t+1 for Q that on an instance x of Q, runs the algorithm
A1 2t+ 1 times and takes the majority outcomes as its solution.

For any integer i ≤ t, let Ei be the event that among the 2t+ 1 executions of the algorithm A1, in
exactly i times the algorithm A1 succeeds. Then

Pr[Ei] = Pr[A1 succeeds exactly i times]

=

(

2t+ 1

i

)

(Pr[A1 succeeds])i(Pr[A1 fails])2t+1−i

≤

(

2t+ 1

i

)

(13/64)2t+1−i

≤

(

2t+ 1

i

)

(13/64)t+1.

Note that in the last inequality, we have used fact t ≥ i.
Since the algorithm A2t+1 fails only if there are fewer than t+1 successes among the 2t+1 executions

of the algorithm A1, we derive that the probability that the algorithm A2t+1 fails is bounded by

Pr

[

t
⋃

i=0

Ei

]

=

t
∑

i=0

Pr[Ei] ≤

t
∑

i=0

(

2t+ 1

i

)

(13/64)t+1 = (13/64)t+1
t

∑

i=0

(

2t+ 1

i

)

≤ (13/64)t+122t+1/2 = (13/64)(13/16)t < (13/16)t. (10)

To bound the failure probability by 1/2q(n), i.e., to make (13/16)t ≤ 1/2q(n), let t0 = ⌈q(n)/ log(16/13)⌉,
and run the algorithm A2t0+1, whose error probability, by (10), is bounded by (13/16)t0 ≤ 1/2q(n). Since
the algorithm A1 runs in time O(p(n)) for a polynomial p of n on instances of length n, the algorithm
A2t0+1 runs in time O(q(n)p(n)), which is still a polynomial of n. Thus, A2t0+1 is a BPP-algorithm for
the problem Q with a success probability at least 1− 1/2q(n).

Now suppose that an NP-complete problem Q is solved by a BPP-algorithm A. As we discussed,
we assume that the instances of Q are encoded by a fixed encoding scheme such that the total number
of (yes- and no-) instances of length n is bounded by cn, where c ≥ 2 is an integer. By Theorem 4.3,
we can assume that the failure probability of the algorithm A is bounded by 1/(2cn) on instances of
length n. Assume that the instances of length n for Q are x1, . . ., xm, where m ≤ cn. Let Ei be the
event that the algorithm A fails on the instance xi. Then Pr[Ei] ≤ 1/(2cn).

19



Consider the binary tree TA corresponding to the algorithm A on instances of length n, which is
a complete binary tree of depth O(p(n)), where p(n) is a polynomial of n and O(p(n)) is the running
time of the algorithm A on inputs of length n. Suppose that the tree TA has N = 2h leaves, all at
level h, where h = O(p(n)). From Pr[E1] ≤ 1/(2cn), we know that on the input x1, there are at most
N/(2cn) of the N leaves of TA that are labeled with an incorrect decision. Mark all leaves that have
the incorrect label on input x1. Similarly we do this for all other instances x2, . . ., xm of length n (note
that the tree TA is the same for all instances of length n), and mark the leaves that are ever labeled
with an incorrect decision for some instances (note that a leaf may be labeled with an incorrect decision
for more than one instances). The total number of leaves that are ever marked in this process (over all
instances of length n) is bounded by

m ·N/(2cn) ≤ cn ·N/(2cn) = N/2.

Therefore, there are some leaves in the tree TA (in fact at least half of the leaves) whose labels are
always correct for all instances of length n! Let l be any such a leaf and let Pl be the path from the
root to l in the tree TA. The path Pl can be encoded as a binary string sn of length h = O(p(n)),
where the i-th bit of sn is the outcome of the i-th random bit generation along the path Pl. Now with
the string sn, we can convert the randomized algorithm A into a deterministic algorithm Ad, which
simulates the randomized algorithm A but at each step of generating a random bit, it reads directly
the corresponding bit in the string sn instead. The algorithm Ad has the same running time as that of
A, thus runs in polynomial time. Moreover, by the assumption on the path Pl and the string sn, the
algorithm Ad gives correct solutions to all instances of Q.

Therefore, a BPP-algorithm for the NP-complete problem Q implies the existence of an (infinite) set
of binary strings Magic = {s1, . . . , sn, . . .}, where each string sn has its length bounded by a polynomial
p(n) of n (where the polynomial p is fixed for all n), and a deterministic polynomial-time algorithm Ad

such that on an instance x of length n for Q, the algorithm Ad, with the help of the string sn, solves
x. Since every problem in NP can be reduced to the NP-complete problem Q in polynomial time, the
set Magic is in fact universal for all problems in NP: with the help of the set Magic, every problem in
NP can be solved by a deterministic algorithm in polynomial time!

This does not quite imply P = NP, yet, because we do not know if the string sn can be constructed
in polynomial time. It has been a long-time interesting problem whether such a “sparse” set Magic
exists. On the other hand, some very interesting results have been obtained on the consequence of the
existence of such a set. One of them is that the existence of such a set would collapse the polynomial-time
hierarchy, which seems very unlikely, although is a little bit weaker than claiming P = NP [16].

Theorem 4.4 (Karp-Lipton [13]) Unless the polynomial-time hierarchy collapses, there is no such a set
Magic with which an NP-complete problem can be solved by a deterministic polynomial-time algorithm.

Combining Theorem 4.4 and our discussion above, we conclude that it is very unlikely that any
NP-complete problem has a BPP-algorithm.

20


