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3 Basic probability theory

We give brief introduction to Probability Theory.

Definition 3.1 A probability space is a triple (Ω,F ,Pr), where
1. Ω is a sample set, whose elements can be called outcomes;
2. F is a set of events, where each event is a subset of Ω; and
3. Pr is a function from F to real numbers. Pr is called a probability measure.

The event set F must satisfy the following conditions:
2.a the sample space Ω is an event;
2.b for an event E, the complement EC = Ω \ E of E is also an event; and
2.c for finite or countable many events E1, E2, . . . in F , the union

⋃

i≥1
Ei is also an event.

The probability measure Pr must satisfy the following conditions:
3.a for all events E in F , 0 ≤ Pr[E] ≤ 1;
3.b Pr[Ω] = 1; and
3.c for finite or countable mutually disjoint events E1, E2, . . ., Pr[

⋃

i≥1
Ei] =

∑

ii≥1
Pr[Ei].

Remark 1. From 2.a, we know that F is not empty. From 2.b and 2.c, we derive that F is a
σ-algebra, i.e., it is closed under complement, countable union, and countable intersection.

Remark 2. If Ω is finite or countable, we can simply let F be the power set 2Ω of Ω, i.e, F consists
of all subsets of Ω. In this case, the probability Pr[E] of an event E can be defined via the probabilities
of the elements included in E, i.e., Pr[E] =

∑

a∈E Pr[a] (note here we have used Rule 3.c). Such a
probability space is called a discrete probability space, for which many results become more intuitive
with easier proofs. Most of our studies are based on discrete probability space.

Remark 3. The sample set Ω can be uncountable. A typical example is that Ω is the set of
all points in the unit circle in the plan. In this case, not all subsets of ω can be events of F . For
example, research in Set Theory has shown that there are point sets in the unit circle in the plan that
are unmeasurable. Moreover, it may become impossible to compute the probability Pr[E] of an event
E based on the probabilities of the elements in E: if E is uncountable, how do we add uncountable
many real numbers?

The following theorem gives a few easily verified facts about probability measures.

Theorem 3.1 The following are true:

(a) For any event E, Pr[EC ] = 1− Pr[E];
(b) For two events E1 and E2 such that E1 ⊆ E2, Pr[E1] ≤ Pr[E2];
(c) For any two events E1 and E2, Pr[E1 ∪ E2] + Pr[E1 ∩ E2] = Pr[E1] + Pr[E2];
(d) For any two events E1 and E2, Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2].

proof. The proofs for (a) and (b) are trivial. We now give a proof for (c). For the events E1 and
E2, we can decompose E1 ∪ E2 into a union of disjoint subsets:

E1 ∪ E2 = (E1 ∩ E2) ∪ (E1 \ E2) ∪ (E2 \ E1).

Thus (by Rule 3.c),

Pr[E1 ∪ E2] = Pr[E1 ∩ E2] + Pr[E1 \ E2] + Pr[E2 \ E1]. (5)

Now since E1 can be decomposed into a union of disjoint subsets as E1 = (E1 ∩ E2) ∪ (E1 \ E2), we
have Pr[E1 \E2] = Pr[E1]−Pr[E1 ∩E2]. Similarly, Pr[E2 \E1] = Pr[E2]−Pr[E1 ∩E2]. Bringing these
two equalities in (5) gives (c). Finally, (d) follows directly from (c).
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Note that by a simple induction based on (d), we can easily derive that Pr[
⋃n

i=1
Ei] ≤

∑n

i=1
Pr[Ei]

holds true for any finite number of events E1, . . ., En.
The following equality will be very useful in our probability analysis, which is called the Principle

of Inclusion-Exclusion.

Theorem 3.2 (Principle of Inclusion-Exclusion) For any number n of events E1, . . ., En, we have

Pr

[

n
⋃

i=1

Ei

]

=

n
∑

i=1

Pr[Ei]−
∑

i<j

Pr[Ei ∩ Ej ] +
∑

i<j<k

Pr[Ei ∩ Ej ∩ Ek]

+ · · ·+ (−1)t+1
∑

1≤k1<···<kt≤n

Pr

[

t
⋂

h=1

Ekh

]

+ · · ·+ (−1)n+1Pr[E1 ∩ · · · ∩ En]

=

n
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n

Pr

[

t
⋂

h=1

Ekh

]

(6)

proof. Theorem 3.1(c) proves Theorem 3.2 for the case n = 2:

Pr[E1 ∪ E2] = (Pr[E1] + Pr[E2])− Pr[E1 ∩ E2].

We use induction to prove the theorem for general n. Let n ≥ 3. By the theorem for case n = 2, we get

Pr

[

n
⋃

i=1

Ei

]

= Pr

[(

n−1
⋃

i=1

Ei

)

∪ En

]

= Pr

[(

n−1
⋃

i=1

Ei

)]

+ Pr[En]− Pr

[(

n−1
⋃

i=1

Ei

)

∩ En

]

= Pr

[

n−1
⋃

i=1

Ei

]

+ Pr[En]− Pr

[

n−1
⋃

i=1

(Ei ∩ En)

]

(7)

By applying induction on n− 1, we get

Pr

[

n−1
⋃

i=1

Ei

]

=

n−1
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

(8)

and

Pr

[

n−1
⋃

i=1

(Ei ∩ En)

]

=

n−1
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

(Ekh
∩ En)

]

=

n−1
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

En ∩
t
⋂

h=1

Ekh

]

Note that the first term (with t = 1)
∑n−1

i=1
Pr[Ei] in (8) plus the term Pr[En] in (7) gives exactly

∑n

i=1
Pr[Ei], which is the first term (with t = 1) in (6). Therefore, in order to prove the theorem, we

only need to prove

n
∑

t=2

(−1)t+1
∑

1≤k1<···<kt≤n

Pr

[

t
⋂

h=1

Ekh

]

(9)

=

n−1
∑

t=2

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

−

n−1
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

En ∩

t
⋂

h=1

Ekh

]
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In fact, we have

n−1
∑

t=2

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

−

n−1
∑

t=1

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

En ∩

t
⋂

h=1

Ekh

]

=
n−1
∑

t=2

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

−
n
∑

t=2

(−1)t
∑

1≤k1<···<kt−1≤n−1

Pr

[

En ∩

t−1
⋂

h=1

Ekh

]

=
n−1
∑

t=2

(−1)t+1
∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

+

n
∑

t=2

(−1)t+1
∑

1≤k1<···<kt−1≤n−1

Pr

[

En ∩

t−1
⋂

h=1

Ekh

]

=

n−1
∑

t=2

(−1)t+1





∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

+
∑

1≤k1<···<kt−1≤n−1

Pr

[

En ∩

t−1
⋂

h=1

Ekh

]





+ (−1)n+1
∑

1≤k1<···<kn−1≤n−1

Pr

[

En ∩

n−1
⋂

h=1

Ekh

]

It is easy to verify that

∑

1≤k1<···<kt≤n−1

Pr

[

t
⋂

h=1

Ekh

]

+
∑

1≤k1<···<kt−1≤n−1

Pr

[

En ∩

t
⋂

h=1

Ekh

]

=
∑

1≤k1<···<kt≤n

Pr

[

t
⋂

h=1

Ekh

]

and
∑

1≤k1<···<kn−1≤n−1

Pr

[

En ∩

n−1
⋂

h=1

Ekh

]

=
∑

1≤k1<···<kn≤n

Pr

[

n
⋂

h=1

Ekh

]

This proves (9), thus proves the theorem.

The Principle of Inclusion-Exclusion looks quite tedious, but is easy to remember: the probability
of a union of a set of events is equal to the sum of the probabilities of the single events, minus the sum
of the probabilities of all possible intersections of two events, plus the sum of the probabilities of all
possible intersections of three events, and so on.

Now we introduce conditional probability.

Definition 3.2 Let E and F be two events, where Pr[F ] 6= 0. The conditional probability of E given

F is defined as
Pr[E|F ] = Pr[E ∩ F ]/Pr[F ].

There are also some easy verified facts for conditional probability.

Lemma 3.3 Let E1, . . ., En be a partition of the sample space Ω, i.e, E1, . . ., En are pairwise disjoint

and E1 ∪ · · · ∪ En = Ω. Then for any event F ,

Pr[F ] =

n
∑

i=1

Pr[F |Ei] · Pr[Ei].

proof. Since Pr[F |Ei] ·Pr[Ei] = (Pr[F ∩Ei]/Pr[Ei])Pr[Ei] = Pr[F ∩Ei], the right side of the above
equation becomes

n
∑

i=1

Pr[F |Ei] · Pr[Ei] =

n
∑

i=1

Pr[F ∩ Ei] = Pr

[

n
⋃

i=1

(F ∩ Ei)

]

= Pr

[

F ∩

n
⋃

i=1

Ei

]

= Pr[F ∩ Ω] = Pr[F ],

where we have used the disjointness of the events F ∩ E1, . . ., F ∩ En (because of the disjointness of
the events E1, . . ., En), and the fact that the union of E1, . . ., En is Ω.
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Finally, we give the definition of a very important concept.

Definition 3.3 Two events E and F are independent if Pr[E ∩ F ] = Pr[E] · Pr[F ], or equivalently, if
Pr[E | F ] = Pr[E], which is also equivalent to Pr[F | E] = Pr[F ].

By reading the well known textbooks in probability theory, some of them are listed in the reference
[2, 5, 6, 9, 10], students can gain more information about the basic concepts and facts of probability
theory introduced in this section.
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