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10 Variance and Chebyshev’s Inequality

In the previous sections, we have seen that the expectation of a random variable sometimes may not
be very informative. However, when further information about the value distribution of the random
variable is provided, such as its upper bound and lower bound, then we have a better control on the
random variable values based on its expectation. In this section, we further explore this line of study.

10.1 The variance of a random variable

The upper bound and lower bound on the values of a random variable give the maximum possible
deviation of the random variable value from its expectation, which, as we have seen in the previous
sections, thus provide useful information for the distribution of the random variable values in terms of
its expectation. Naturally, measures on the “average deviation” of the random variable value from it e
expectation will provide further information for the value distribution of the random variable. This is
given by the variance of a random variable. A formal definition is given as follows.

Definition 10.1 The variance of a random variable X is defined as var[X] = E[(X −E[X])2].

We make some comments on the definition of variance. Variance is used to measure the difference
between the value and the expectation of a random variable. One might think E[X −E[X]] is a more
direct measurement for this purpose. However, by Linearity of Expectation,

E[X −E[X]] = E[X]−E[E[X]] = E[X]−E[X] = 0,

(well, this in fact meets our intuition: the average difference between the value and the average value
is 0). Thus, the expected absolute difference E[|X − E[X]|] should be used to measure the difference
between the value and the expectation of the random variable X. However, the absolute value function
|X −E[X]| is hard to handle (e.g., it is not differentiable). On the other hand, (X −E[X])2 is a much
nicer function. Note that for any positive number t, (X − E[X])2 ≤ t2 and |X − E[X]| ≤ t define the
same event. So the variance var[X] defined based on the expected value of (X −E[X])2 serves well for
measuring the absolute difference between the value and the expectation of the random variable X.

Lemma 10.1 var[X] = E[X2]− (E[X])2, which also gives E[X2] ≥ (E[X])2 .

proof. By Linearity of Expectation, we have (note that E[X] is a constant):

var[X] = E[(X −E[X])2] = E[X2 − 2X ·E[X] + (E[X])2] = E[X2]−E[2X ·E[X]] +E[(E[X])2]

= E[X2]− 2E[X] ·E[X] + (E[X])2 = E[X2]− (E[X])2.

The inequality E[X2] ≥ (E[X])2 is because (X −E[X])2 ≥ 0 gives var[X] = E[(X −E[X])2] ≥ 0.

The variance of the sum of independent random variables satisfies the following property:

Lemma 10.2 Let X and Y be two independent random variables, then var[X+Y ] = var[X]+var[Y ].

proof. By definition, we have:

var[X + Y ] = E[((X + Y )−E[X + Y ])2]

= E[((X −E[X]) + (Y −E[Y ]))2]

= E[(X −E[X])2 + (Y −E[Y ])2 + 2(X −E[X])(Y −E[Y ])]

= E[(X −E[X])2] +E[(Y −E[Y ])2] + 2E[(X −E[X])(Y −E[Y ])]

= var[X] + var[Y ] + 2E[(X −E[X])(Y −E[Y ])]. (23)
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Since X and Y are independent, the random variables X ′ = X − E[X] and Y ′ = Y − E[Y ] are also
independent. By Lemma 10.2, we have

2E[(X −E[X])(Y −E[Y ])] = 2 ·E[X −E[X]] ·E[Y −E[Y ]].

By Linearity of Expectation, E[X−E[X]] = E[X]−E[E[X]] = 0 (similarly E[Y −E[Y ]] = 0). Bringing
this back to (23) gives var[X + Y ] = var[X] + var[Y ].

Obviously, Lemma 10.2 can be extended to the case of more than two independent random variables.
On the other hand, we should not expect that Lemma 10.2 be extended to general linear combinations
of independent random variables, as we did for the linearity of expectation in Theorem 8.1: for a
constant c, by the definition we will have var[cX] = E[(cX −E[cX])2] = c2 · var[X].

The function that directly measures the absolute difference between the values and the expectation
of a random variable X is called the standard deviation σ[X] which is defined to be the positive square
root of the variance of X: σ[X] =

√

var[X]. Thus, the variance var[X] is also written as σ2[X].
There are some other functions that describe the value distribution of random variables. We give

the definitions below. These functions will become more important when we study probability spaces
with uncountable sample spaces (for example, the sample space is the set of all points in the unit square
in the 2D Euclidean space).

Definition 10.2 Let X and Y be random variables.
1. The density function for X is defined as pX(u) = Pr[X = u];
2. The distribution function for X is defined as FX(u) = Pr[X ≤ u].
3. The joint density function for X and Y is defined as pX,Y (u, v) = Pr[X = u ∩ Y = v];
3. The joint distribution function for X and Y is defined as FX,Y (u, v) = Pr[X ≤ u ∩ Y ≤ v].

10.2 Computing expectations and variances

There are certain important classes of random variables, that will be introduced in this subsection. We
will show how the expectation and the variance of these random variables are computed. Throughout
the discussion in this subsection, we assume that p is a real number with 0 < p < 1.

We start with a very simple case. Suppose that we have a (probably biased) coin κp that shows head
with probability p and tail with probability 1 − p. Thus, tossing the coin κp (only once) constitutes
a probability space Ω1 whose sample space has only two outcomes H and T such that Pr[H] = p
and Pr[T ] = 1 − p. Define a random variable X1 on this probability space such that X1(H) = 1 and
X1(T ) = 0. Thus, in terms of its density function, we have Pr[X1 = 1] = p and Pr[X1 = 0] = 1 − p.
In fact, we do not have to restrict to the probability space Ω1 with only two outcomes. If a random
variable X1 on an (arbitrary) probability space has its density function satisfy Pr[X1 = 1] = p and
Pr[X1 = 0] = 1− p, we will call X1 a Bernoulli random variable with parameter p (or say that X1 is a
random variable of Bernoulli distribution with parameter p).

The expectation E[X1] of a Bernoulli random variable X1 with parameter p can be easily computed,
using Formula (20):

E[X1] = Pr[X1 = 1] · 1 + Pr[X1 = 0] · 0 = p. (24)

To compute the variance var[X1] of the Bernoulli random variable X1 with parameter p, we use
Lemma 10.1, noting that Pr[X2

1
= 1] = p and Pr[X2

1
= 0] = 1− p:

var[X1] = E[X2

1
]− (E[X1])

2 = p− p2 = p(1− p). (25)

Now we consider the experiment of tossing the coin κp n times. Thus, the outcomes of the sample
space are all strings of length n in {H,T}n, where an outcome containing h H’s and n − h T ’s has
a probability ph(1 − p)n−h (students should verify that this truly makes a valid probability space
Ω2 because

∑n
h=0

(

n
h

)

ph(1 − p)n−h = 1). Define a random variable X2 that for an outcome ω in

the probability space Ω2, X2(ω) is equal to the number of H’s in ω. Since there are
(

n
h

)

ways to
pick h positions in a string of length n and place the symbol H in these h positions (and place the
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symbol T in the other n − h positions), we derive that the density function for the random variable
X2 is Pr[X2 = h] =

(

n
h

)

ph(1 − p)n−h for all integers 0 ≤ h ≤ n. Again, for any random variable
X2 on an arbitrary probability space (not necessary the above probability space Ω2), whose range is
{0, 1, 2, . . . , n} and density function is Pr[X2 = h] =

(

n
h

)

ph(1 − p)n−h for all 0 ≤ h ≤ n, we will call
X2 a binomial random variable with parameters n and p (or say that the random variable X2 has a
binomial distribution with parameters n and p).

Note that the binomial random variable X2 can be represented by a sum of independent Bernoulli
random variables. For this, define the Bernoulli random varaible Yi, for 1 ≤ i ≤ n, on the probability
space Ω2 such that for any outcome ω in Ω2, Yi = 1 if the i-th symbol in ω is H, and Yi = 0 otherwise.
Clearly, Pr[Yi = 1] = p and Pr[Yi = 0] = 1− p. Thus, Yi is a Bernoulli random variable with parameter
p. Moreover, since the n tosses of the coin κp are independent, for any i 6= j, the random variables Yi

and Yj are independent. Now the binomial random variable X2 is clearly equal to Y1 + Y2 + · · ·+ Yn.
Therefore, by Linearity of Expectation and using (24), we have

E[X2] = E[Y1 + Y2 + · · ·+ Yn] = E[Y1] +E[Y2] + · · ·+E[Yn] = np. (26)

By Lemma 10.2 (see also the remark after the proof of Lemma 10.2) and using (25), we have

var[X2] = var[Y1 + Y2 + · · ·+ Yn] = var[Y1] + var[Y2] + · · ·+ var[Yn] = np(p− 1). (27)

We consider the binomial random variable with a special (and the most popular) parameter p = 1/2.
Then (26) shows that if you toss the coin κ1/2 n times, then the expected number of times you will
see the head is np = n/2. This certainly matches our intuition. Moreover, by (27), the variance is
np(p − 1) = n/4. Remember that the variance measures the square of the deviation of the random
variable values from its expectation. Thus, the expected deviation of the binomial random variable with
parameter 1/2 from its expectation is really

√

n/4 =
√
n/2. Note that compared to the expectation

n/2 of the random variable,
√
n/2 is much smaller. This gives us a feeling that the binomial random

variable is quite concentrated around its expectation.
Now we return back to the game of tossing the coin κp, but this time we change the game rule:

we repeatedly toss the coin κp but stop when the first head turns up. Thus, the outcomes of this
probability space Ω3 are the strings of the form TT · · ·TH (i.e., an arbitary number of T ’s followed by
a single H). The probability on an outcome ThH is (1− p)hp. (Again, students should verify that this
makes a valid probability space Ω3 because

∑

∞

h=0
(1 − p)hp = 1). Define a random variable X3 on Ω3

that for an outcome ω in Ω3, X3(ω) is equal to the length of ω (thus, X3(ω) is equal to the number
of tosses given by the outcome ω). Again, for any random variable X3 with the range {1, 2, 3, . . .} and
density function Pr[X3 = h] = (1 − p)h−1p for all h ≥ 1, we will call X3 a geometric random variable
with parameter p (or say that the random variable X3 has a geometric distribution with parameter p).

Before we discuss expectation and rariance of geometric random variables, we prove a useful lemma.

Lemma 10.3 For any p, 0 < p ≤ 1,
∑

∞

h=1
h(1− p)h−1 = 1/p2.

proof. Let S =
∑

∞

h=1
h(1− p)h−1. We have

S =
∞
∑

h=1

h(1− p)h−1 = 1 +

∞
∑

h=2

h(1− p)h−1 = 1 +

∞
∑

h=2

((h− 1) + 1)(1− p)h−2(1− p)

= 1 + (1− p)

∞
∑

h=2

(h− 1)(1− p)h−2 + (1− p)

∞
∑

h=2

(1− p)h−2

= 1 + (1− p)

∞
∑

h=1

h(1− p)h−1 + (1− p) · 1
p
= 1 + (1− p) · S +

1− p

p

Solving S = 1 + (1− p)S + (1− p)/p gives S = 1/p2.
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The trick in the proof of Lemma 10.3 is to set the infinite sum as a variable S, then rewrite the
infinite sum so that S is given in an equation of a losed form and we can solve the equation to get the
value of S. This trick will be useful in our combinatorial analysis, in particular it will be used when we
compute the expectation and rariance of geometric random variables.

By definition, the expectation of the geometric random variable X3 with parameter p is given by

E[X3] =

∞
∑

h=1

h · Pr[X3 = h] =

∞
∑

h=1

h(1− p)h−1p = p

∞
∑

h=1

h(1− p)h−1.

Applying Lemma 10.3, we get E[X3] = p
∑

∞

h=1
h(1− p)h−1 = p/p2 = 1/p.

Now we consider the variance of X3. By Lemma 10.1, var[X3] = E[X2

3
]− (E[X3])

2. By the above
discussion, we know (E[X3])

2 = 1/p2. Thus, we only need to compute E[X2

3
].

The random variable X2

3
only takes values that are perfect squares. Moreover, for any positive

integer h, [X2

3
= h2] and [X3 = h] define the same event. Thus, Pr[X2

3
= h2] = (1−p)h−1p. So we have

E[X2

3
] =

∞
∑

h=1

h2 · Pr[X2

3
= h2] =

∞
∑

h=1

h2(1− p)h−1p = p

∞
∑

h=1

h2(1− p)h−1. (28)

So we need to compute the sum
∑

∞

h=1
h2(1 − p)h−1. As we did in the proof of Lemma 10.3, let

T =
∑

∞

h=1
h2(1− p)h−1. Then we have

T =
∞
∑

h=1

h2(1− p)h−1 = 1 +

∞
∑

h=2

h2(1− p)h−1 = 1 + (1− p)

∞
∑

h=2

((h− 1) + 1)2(1− p)h−2

= 1 + (1− p)

∞
∑

h=1

(h+ 1)2(1− p)h−1 = 1 + (1− p)

∞
∑

h=1

(h2 + 2h+ 1)(1− p)h−1

= 1 + (1− p)

(

∞
∑

h=1

h2(1− p)h−1 + 2

∞
∑

h=1

h(1− p)h−1 +

∞
∑

h=1

(1− p)h−1

)

= 1 + (1− p)

(

T +
2

p2
+

1

p

)

where in the last equality, we replaced the infinite sum
∑

∞

h=1
h2(1−p)h−1 by T , applied Lemma 10.3 to

get
∑

∞

h=1
h(1−p)h−1 = 1/p2, and used the formula of sum for the geometric seriese

∑

∞

h=1
(1−p)h−1 =

1/(1− (1− p)) = 1/p. Now Solving T = 1+(1− p)(T +2/p2+1/p) gives T = (2− p)/p3. Bringing this
in (28) we get E[X2

3
] = (2− p)/p2. So var[X3] = E[X2

3
]− (E[X3])

2 = (2− p)/p2 − 1/p2 = (1− p)/p2.
We summarize the discussion in this subsection in the following theorem.

Theorem 10.4 Let p be a real number, 0 < p < 1, and let n be an integer,
(1) for Bernoulli random variable X1 with parameter p, E[X1] = p and var[X1] = p(1− p);
(2) for binomial random variable X2 with parameters n and p, E[X2] = np and var[X2] = np(1−p);
(3) for geometric random variable X3 with parameter p, E[X2] = 1/p and var[X3] = (1− p)/p2.

10.3 Chebyshe’s Inequality

When the variance of a random variable X is known, we have the following Chebyshe’s Inequality
that provides useful information about the value distribution of the random variable X in terms of its
expectation E[X] and variance var[X].

Theorem 10.5 (Chebyshe’s Inequality) Let X be a random variable and let t > 0 be a constant. Then
Pr[|X −E[X]| ≥ t] ≤ var[X]/t2.

proof. Since X is a random variable, X ′ = (X − E[X])2 is also a random variable that takes
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only non-negative values. Moreover, t2 is a positive number. Thus, we can apply Markov Inequality
(Theorem 9.1) on X ′, which gives

Pr[X ′ ≥ t2] ≤ E[X ′]

t2
=

E[(X −E[X])2]

t2
=

var[X]

t2
.

Since t > 0, [X ′ ≥ t2] (which is [(X − E[X])2 ≥ t2]) and [|X − E[X]| ≥ t] define the same event so
Pr[X ′ ≥ t2] = Pr[|X −E[X]| ≥ t], the theorem gets proved.

Similar to the way we handled expectation, if we let t = r · σ[X] in Theorem ??, we will get the
following result (note that σ2[X] = var[X]), which is also called Chebyshev’ Inequality.

Corollary 10.6 (Chebyshev’s Inequality) Let X be a random variable and let r > 0 be a constant.
Then Pr[|X −E[X]| ≥ r · σ[X]] ≤ 1/r2.

We show how Chebyshev’s Inequality is able to provide more precise information for a random
variable when it is compared with Markov Inequality. Consider the binomial random variable X2 with
parameter p = 1/2. By Theorem 10.4, the expectation of X2 is E[X2] = n/2. Suppose that we ask
“what is the probability that the value of X2 is larger than or equal to 3n/4?”

Using Markov Inequality, we get

Pr[X2 ≥ 3n/4] ≤ n/2

3n/4
=

2

3
. (29)

On the other hand, if we use Chebyshev’s Inequality, noting that [X2 ≥ 3n/4] and [(X2 − n/2) ≥ n/4]
define the same event, and that var[X2] = n/4, then we get

Pr

[

X2 ≥
3n

4

]

= Pr
[(

X2 −
n

2

)

≥ n

4

]

≤ Pr
[∣

∣

∣
X2 −

n

2

∣

∣

∣
≥ n

4

]

≤ var[X2]

(n/4)2
=

4

n
. (30)

Comparing (29) and (30), you can see that Chebyshev’s Inequality gives a much tighter bound for the
probability for the event [X2 ≥ 3n/4].
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