
CSCE-637 Complexity Theory

Lecture #4, November 5, 2020

Lecturer: Professor Jianer Chen

4 The Baker-Gill-Solovay Theorem

The central problem in complexity theory is the P versus NP problem. Recall that P is the class of
languages that are accepted by deterministic polynomial-time Turing machines, while NP is the class
of languages that are accepted by nondeterministic polynomial-time Turing machines. Therefore, the
relationship between P and NP asks whether nondeterministic polynomial-time Turing machines are
more powerful than deterministic polynomial-time Turing machines. The current status of research in
complexity theory seems still pretty far from a solution to this question. We actually do not seem to
have powerful enough techniques that enable us to derive precise relations between these two models.

We have seen Turing machines with oracles. Therefore, it is natural to ask when equipped with ora-
cles, what can we say about polynomial-time computations that are deterministic and nondeterministic,
respectively. This section gives interesting results on this question.

Let us first give formal definitions. Let A be an language (the oracle set). We say that a language L
is in PA if there is a deterministic polynomial-time oracle Turing machine that uses A as its oracle and
accepts the language L. Similarly, a language L′ is in NPA if there is a nondeterministic polynomial-time
oracle Turing machine that uses A as its oracle and accepts the language L′.

Clearly, PA ⊆ NPA for all oracle sets A, since a deterministic polynomial-time oracle Turing machine
is a special case of a nondeterministic polynomial-time oracle Turing machine.

Define by EXP the class of languages that are accepted by deterministic Turing machines (with no
oracle) in time O(2n

c

), where c is any constant.

Theorem 4.1 There is an oracle set A such that PA ⊆ NPA.

proof. The observation given before the theorem shows that we only need to find an oracle set A
such that NPA ⊆ PA.

The idea is quite simple. Although deterministic polynomial-time computation and nondeterministic
polynomial-time computation may be different in power, if we add a “super-powerful” oracle to both
models, the difference will be covered up. For this, let us consider the following oracle set:

A = {(M,y, 1m) | the deterministic Turing machine M accepts y in 2m steps},

where 1m devotes a sequence of m 1’s. We remark that the oracle set A, as a language, is actually EXP-
complete (i.e., every language in EXP can be reduced to A by a Karp-reduction, i.e., a polynomial-time
many-one reduction). Therefore, the oracle set A catches the complexity of the class EXP, which is at
least as high as that of nondeterministic polynomial-time Turing machines.

Now consider an arbitrary language L in NPA. By definition, L is accepted by a nondeterministic
oracle Turing machine M1 that uses the oracle set A and runs in time p(n), where p(n) is a fixed
polynomial of n. Consider the algorithm in Figure 1.

By the definition, MA
1 accepts x (i.e., x ∈ L) if and only if there is a computational path P of M1

on the input x along which M1 accepts x. For each query (M,y, 1m) made by M1 along the path P ,
the machine M2 runs the machine M on y up to 2m steps to determine directly whether (M,y, 1m) ∈ A
(note that M2 can verify easily whether M is a deterministic Turing machine). Therefore, the simulation
by M2 on the path P correctly checks whether the oracle Turing machine M1 using oracle A accepts
the input x along the path P .

This verifies that the Turing machine M2 accepts the language L. Now consider the running time
of M2. Since the nondeterministic Turing machine M1 runs in time p(n), there are at most 2p(n)

computational paths when M1 runs on the input x, where |x| = n. Thus, the number of times the loop
in step 1 is executed is bounded by 2p(n). On each computational path P , M1 runs in at most p(n)

1

Algorithm 1 M2(x)
\\ M2 accepts the language L

1. for each computational path P of M1 on x do
1.1 simulate M1 on x along the path P ;

\\ during the simulation, for each query (M,y, 1m) made by M1 on the
\\ path P , M2 simulates M on y for 2m steps to decide if (M,y, 1m) ∈ A;

1.2 if M1 accepts x on the path P then accept x and stop;
2. reject x.

Figure 1: A deterministic algorithm that simulates MA
1 on input x

steps. However, a step in which M1 makes an oracle query (M,y, 1m) on A now becomes a simulation
by M2 on M for at most 2m steps. Since the path P runs in at most p(n) steps, we have m ≤ p(n) (i.e.,
M1 cannot write down more than p(n) 1’s if it runs in p(n) steps). Therefore, a query step of M1 now is
simulated by at most O(2p(n)) steps of the Turing machine M2. In conclusion, the computational path
P of M1 can be simulated by the Turing machine M2 in no more than O(2p(n)p(n)) steps. Combining
this with the above discussion, we conclude that the running time of the Turing machine M2 is bounded
by 2p(n) ·O(2p(n)p(n)) = O(22p(n)p(n)). Let q(n) be a polynomial of n such that 2q(n) is an upper bound
on the running time of the Turing machine M2, q(n) = O(p(n) log p(n)).

Now consider a deterministic polynomial-time oracle Turing machine M3 that uses the oracle set
A. On an input x of length n, the Turing machine M3 makes a query (M2, x, 1

q(n)) on the oracle set
A, and accepts x if and only if (M2, x, 1

q(n)) ∈ A. Since x is in L if and only the deterministic Turing
machine M2 accepts x in no more than 2q(n) steps, the oracle Turing machine M3 using the oracle A
accepts exactly the language L. Moreover, M3 runs in polynomial time since q(n) is a polynomial of
n = |x|. This proves that L ∈ PA. Since L is an arbitrary language in NPA, this proves NPA ⊆ PA,
thus, completes the proof that for the oracle set A, PA = NPA.

We now show that there is an oracle set B that separates P and NP, i.e., PB 6= NPB . To do this,
we somehow need to make an oracle set B for which nondeterministic Turing machines have obvious
and provable advantages. We start with the following lemma.

Lemma 4.2 For any oracle B, the language UB = {1n | B contains a string of length n} is in NPB.

proof. A nondeterministic linear-time oracle Turing machine M that uses the oracle B can recognize
UB as follows. On the input 1n of length n, M nondeterministically guesses a string x of length n,
queries it on the oracle set B, and accepts if and only if x ∈ B. In particular, if 1n ∈ UB , then one of
the computational paths of M will guess a correct string x of length n in B so that computational path
will accept 1n. On the other hand, if 1n 6∈ B, then all strings x of length n guessed by M are not in
B so all computational paths of M reject 1n. This shows that the nondeterministic (and linear-time)
Turing machine M accepts the language UB , and UB ∈ NPB .

By Lemma 4.2, we only need to construct an oracle set B such that UB 6∈ PB . This is done by the
technique of diagonalization that has been standard and useful in the study of complexity theory and
computability theory. We need some preparation before we formally describe the technique.

Recall that Turing machines, including oracle Turing machines, are given by their transition func-
tions. Therefore, each Turing machine can be described by a finite sequence of symbols. Also, we
assume that each Turing machine M can be described by infinitely many finite sequences. For this, we
can fix a special “ending” symbol so that a valid representation of M followed by the ending symbol
that is followed by any finite symbol sequence is also treated as a valid representation of the Turing
machine M . Now assuming an universal encoding, each valid representation of a Turing machine can
be given as a finite binary string. Therefore, all Turing machines can be listed as an infinite sequence of
finite binary strings and for each Turing machine M , there are infinitely many finite binary strings in
the sequence that are valid representations of M . In particular, all deterministic oracle Turing machines

2

can be listed as an infinite sequence
M1,M2, . . . ,Mi, . . . , (1)

in which for each deterministic oracle Turing machine M , there are infinite many indices ij , j ≥ 0, such
that all Mij are valid representations of M .

Our construction of the oracle set B that makes UB 6∈ PB is based on the sequence (1), for which
the set B is constructed stage by stage based on the Turing machines Mi, in the order of the sequence.
The general idea is that for each i, we exclude the possibility that the oracle Turing machine Mi accepts
the language UB . To do this, for each i, we find an input length ni and enforce Mi to make a “wrong”
decision on the input 1ni , i.e., if Mi accepts 1ni then we exclude all strings of length ni from B (thus,
1ni 6∈ UB), while if Mi rejects 1ni , then we make B to include some string of length ni (thus, 1ni ∈ UB).
To make sure that the running time of the Turing machine Mi will cover all possible polynomials of ni,
we run Mi on input 1ni for up to 2ni−1 steps.

Note that on the input 1ni of length ni, the machine Mi may query strings y of length larger than
ni for which the membership of y in B has not been decided yet. We must handle this carefully, so that
when the Turing machine Mi uses the oracle B, it only uses the subset of B that has been constructed
at the current stage.

The set B is constructed in stage. We devote by Bi the subset of B that is constructed at stage i.
At each stage i, the set Bi is a finite set and contains strings of length bounded by ni. We also enforce
that Bi−1 ⊆ Bi and that ni−1 < ni, for all i. Initially, we have B = ∅. Inductively, assume that we
have constructed the set Bi−1, such that for each oracle Turing machine Mk with k ≤ i − 1, there is
an input length nk, nk ≤ ni−1, such that using the oracle set Bi−1, Mk accepts 1nk if and only if Bi−1
contains no string of length nk, i.e., if and only if 1nk 6∈ UBi−1

. For each k ≤ i − 1, since the running
time of the Turing machine Mk is limited to 2nk−1 steps, the number of strings queried by Mk on the
input 1nk is a finite number.

Now pick an integer ni > ni−1 that is also larger than the length of any string queried by an oracle
Turing machine Mk on input 1nk with k < i, no matter whether the string is in Bi−1 or not (recall
that Mk on the input 1nk queries only finite number of strings on the oracle). We will consider if we
want to add a string of length ni to Bi−1 to make Bi. Since ni is larger than the length of any string
queried by the oracle Turing machine Mk on input 1nk for any k < i, adding a string of length ni to
the oracle will not change the computational result of the Turing machine Mk on the input 1nk .

We simulate the oracle Turing machine Mi on the input 1ni for up to 2ni−1 steps. If Mi queries a
string y of length smaller than ni on the oracle, then we let the answer to the query be consistent with
y ∈ Bi−1. If Mi queries a string z of length at least ni on the oracle, then we let the answer to the query
be NO. Using these answers to the queries, if the Turing machine Mi accepts 1ni within 2ni−1 steps,
then we add no string of length ni to the oracle set B so that the oracle B contains no string of length
ni (note that since ni−1 < ni for all i, neither a previous nor a later stage can add a string of length ni

to B). If the Turing machine Mi does not accept 1ni in 2ni−1 steps (i.e., Mi either rejects 1ni or has
not reached a decision yet), then we add a string of length ni to the oracle set B. Note that since we
only simulate Mi for at most 2ni−1 steps, Mi can make at most 2ni−1 queries. Therefore, on at most
2ni−1 strings of length ni, the Turing machine Mi on the input 1ni by our construction has answered
NO so these strings should be excluded from the set B. Since there are 2ni strings of length ni, there
must be some strings of length ni that are not queried by Mi on the input 1nk . Thus, including one b
of these un-queried string in B will not change the computational result of Mi on the input 1ni . This
completes the construction of the subset Bi. By the construction, Mi accepts 1ni within 2ni−1 steps if
and only if Bi contains no strings of length ni. Moreover, since no Turing machine Mk on the input
1nk with k < i queries a string of length ni, adding the string b of length ni to B will not change the
computational result of Mk on 1nk . Therefore, we still maintain the condition that for all k ≤ i, the
oracle Turing machine Mk accepts 1nk if and only if B contains no string of length nk.

Note that for each i, Bi is a finite set. However, we repeat the above construction for all deterministic
oracle Turing machines Mi, the final set B, which is the limit of Bi, or the union of all Bi, is an
infinite set. Moreover, recall that each deterministic oracle Turing machine has infinitely many valid
representations in the sequence (1), for each deterministic oracle Turing machine M , there are actually

3

infinitely many inputs of the form 1ni such that M accepts the language UB if and only if B contains
no string of length ni.

Theorem 4.3 For the oracle set B constructed above, PB 6= NPB.

proof. By Lemma 4.2, UB ∈ NPB . Thus, it suffices to prove that UB 6∈ PB .
Assume the contrary that UB ∈ PB . Thus, UB is accepted by a deterministic oracle Turing machine

M that uses the oracle set B and runs in time p(n), where p(n) is a polynomial of n. Let i be an index
such that the Turing machine Mi is a valid representation of M and 2ni−1 > p(ni) (recall that the
deterministic oracle Turing machine M has infinitely many valid representations in the sequence (1)
and that ni−1 < ni for all i. Thus, we can pick a sufficiently large index i such that ni is large enough
to ensure the exponential function 2ni−1 being larger than the fixed polynomial function p(ni)). Since
the running time of Mi is bounded by p(ni), we can assume without loss of generality that on any input
of length ni, the Turing machine Mi runs in no more than p(ni) steps and stops with a decision (yes or
no). Since 2ni−1 > p(ni), the Turing machine Mi accepts an input of length ni in no more than p(ni)
steps if and only if Mi accepts an input of length ni in no more than 2ni−1 steps.

By the construction of the oracle set B, the oracle Turing machine Mi accepts 1ni in p(ni) steps,
which is equivalent to that the oracle Turing machine Mi accepts 1ni in 2ni−1 steps, if and only if B
contains no string of length ni. Thus, Mi accepts 1ni if and only if 1ni is not in UB , contradicting the
assumption that Mi accepts UB .

Theorems 4.1 and 4.3 were first discovered by Baker, Gill and Solovey [3], which once were regarded
as an evidence for the possibility of an independent mathematical system for the P versus NP problem
(i.e., no current mathematical system would lead to a confirmed answer to the relationship between P
and NP), based on the following reasonning. If there were a proof for P = NP, then one could probably
be able to “relativize” the proof and allow the proof to also handle the query steps, which would
give a proof for PB = NPB for any oracle set B. But this would contradict Theorem 4.3. Similarly,
relativizing a proof for P 6= NP would show PA 6= NPA for all oracle sets A, which would contradict
Theorem 4.1. More formally, we say that a proof on relationships among complexity classes without
oracles is relativizable if the proof can be migrated to lead to the relationships among complexity
classes with oracles. Therefore, Theorems 4.1 and 4.3 exclude the possibilities of relativizable proofs
for the relationship between P and NP. However, later research found out that there are many proofs
for relationships among complexity classes are not relativizable. In particular, the possibility of non-
relativizable proofs that give firm answers to the P versus NP problem cannot be eliminated.

4

References

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM 42, pp. 844-856, (1995).

[3] T. Baker, J. Gill, and R. Solvay, Relativizations of the P =? NP question, SIAM Journal
on Computing 4, pp. 431-442, (1975).

[4] H.Bodlaender, R. Downey, M. Fellows, and D. Hermelin, On problems without polyno-
mial kernels, Journal of Computer and System Sciences 75, pp. 423-434, (2009).

[5] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theoretical Computer
Science 411, pp. 3736-3756, (2010).

[6] J. Chen, J. Kneis, S. Lu, D. Molle, D. Richter, P. Rossmanith, S.-H. Sze, and F.
Zhang, Randomized divide-and-conquer: improved path, matching, and packing algorithms,
SIAM Journal on Computingt 38, pp. 2526-2547, (2009).

[7] L. Fortnow and R. Santhanam, Infeasibility of instance compression and succinct PCPs for
NP, Journal of Computer and System Sciences 77, pp. 91-106, (2011).

[8] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H.Freeman and Company, New York, 1979.

[9] J. Gill, Computational complexity of probabilistic Turing machines, SIAM Journal on Computing
6, pp. 675-694, (1977).

[10] R. L. Graham, D. E. Knuth, and O. Pataschnik, Concrete Mathematics - A Foundation for
Computer Science, Addison-Wesley, Reading, MA, 1992.

[11] N. Immerman, Nondeterministic space is closed under complementation, SIAM Journal on Com-
puting 17, 935-938 (1988).

[12] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes,
in Proc. 12th ACM Symposium on Theory of Computing, pp. 302-309, (1980).

[13] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms (3rd ed.),
Addison-Wesley Professional, (1997).

[14] S. Mahaney, Sparse complete sets of NP: solution of a conjecture of Berman and Hartmanis,
Journal of Computer and System Sciences 25-2, 130-143 (1982).

[15] C. Papadimitriou, Computational Complexity, Addison Wesley, Reading, Mass., (1994).

[16] N. Pippenger and M. J. Fischer, Relations among complexity measures, Journal of the ACM
26, 423-432 (1979).

[17] M. Sipser, A complexity theoretic approach to randomness, Proc. 15th ACM Symposium on
Theory of Computing, 330-335 (1983).

[18] L. J. Stockmeyer, The polynomial-time hierarchy, Theoreticl Computer Science 3-1, 1-22 (1976).

[19] R. Williams, Finding paths of length k in O∗(2k) time, , Information Processing Letters 109-6,
315-318 (2009).

[20] C. K. Yap, Some consequences of non-uniform conditions on uniform classes, Theoreticl Computer
Science 26, 287-300 (1983).

5

