CSCE-637 Complexity Theory
Lecture #2, October 28, 2020

Lecturer: Professor Jianer Chen

3 The Karp-Lipton Theorem

The complexity class BPP describes a class of computational problems that are “practically feasible”
because one may use pseudo-random resources to implement randomized algorithms. Therefore, it
becomes extremely interesting to know whether NP can be solved by this model, i.e., whether NP C
BPP. If the answer is positive, then this would provide an exciting approach to solving NP-hard
problems in practice. By the previous lecture, we know that BPP is a subclass of P/poly. Thus,
NP C BPP would imply NP C P/poly. On the other hand, if it can be shown that NP C P/poly
does not hold true or is unlikely, then NP C BPP also fails or becomes unlikely, thus excluding the
possibility of solving NP-hard problems using randomized algorithms.

The purpose of this section is to present a famous result by Karp and Lipton [1] that shows that
NP C P/poly is unlikely.

Recall that the polynomial-time hierarchy PH is defined inductively as follows [2]:

P =11 = P,
forall k>0, %P =NP¥, II} =co-Xj ,, and
PH= | | ¥
k>0

In particular, NP = 37 and coNP = II}.
It is known [2] that for all k& > 1, a language A is in X% if and only if there is a polynomial-time
computable Boolean function F4(z,y1,y2,...,yx) and a polynomial p(n) such that:

A={z | pnYpy2 - QpurFalx,y1,y2, .- yr) = 1},

where the quantifiers go alternatively between 3 and V, starting from 3. Thus, @, is either 3 or V
depending on the parity of k. The subscript p on each quantifier @), means that the quantifier goes
through all (binary) strings of length p(|z|). Similarly, a language B is in II} if and only if there is a
polynomial-time computable Boolean function Fg(z,y1,¥y2,...,yr) and a polynomial g(n) such that:

B= {IL‘ | qulaqyz © ’qukFB(xaylay%' .. 7yk) = 1}

It is commonly believed that the polynomial-time hierarchy PH does not collapse, that is, for all
k >0, we have ¥}, # X, or equivalently, PH # X} for any k.

Theorem 3.1 If NP C P/poly, then X8 = II.

PROOF. Let L be a language in I15. Thus,

L ={x |Voy13pyo Fr(z,y1,y2) = 1},

where Fp(z,y1,y2) is a polynomial-time computable function and p is a polynomial. Without loss of
generality, we assume that if yo is a string of all 0’s, then F(z,y1,y2) = 0 for all 2 and y; (otherwise,
we can construct a function that satisfies this condition based on the given function Fp and keep the
new function polynomial-time computable).

Consider the following language, where all b’s are binary bits:

B ={(x,y1,b1ba - b;—1) | biba---b;_11 is a prefix of a string ys such that Fr(x,y1,y2) = 1}

By the definition of the language L, if Fr(x,y1,y2) = 1, then |y1| = p(|z|), and |y2| = p(|z|). Therefore,
in the above definition of B, we can assume that |y;| = p(|z]) and 1 < i < p(]z|). The language
B is clearly in NP: on an input (z,y1,b1b2---b;—1), where |y1| = p(|z|) and 1 < i < p(|z|), we can
simply guess p(n) — ¢ binary bits bj,,, ..., b;(let yo = biby---blbj,q,...,b) then verify that
Fr(z,y1,92) = 1.

By our assumption NP C P/poly, we have B € P/poly. By Theorem 2.1 in Lecture 2, B is accepted
by a polynomial-size circuit family Fg = {C,, | m > 1}.

Now fix an input length n, and let m = n + p(n). We construct a circuit D,, that takes a binary
string of length m as input and outputs a binary string of length p(n). The purpose here is that for a
pair (z,y1), where |z| = n and |y;| = p(n), if there is a yo such that Fy(z,y1,y2) = 1, then the circuit
D,, on input (z,y;) outputs such a yo with the largest lexicographic order.

The circuit D,, consists of the p(n) + 1 circuits Cy,, Cpuy1, - -+ Crgpen) in the circuit famity Fp.
For each h > 0, let b, be the output of the circuit Cy,1p. The output of Dy, is b1ba - - - by(p,). The input
of the circuit C,, is (x,y1), the same as the input of the circuit D,,. For each h, 0 < h < p(n) — 1,
the circuit Cy,4n41 has m + h + 1 input bits: the first m input bits of Cy,4n41 are from (z,y;), the
input of D,,, and the rest h 4+ 1 input bits of C,, 141 are bibs - - - bpbg. The circuit D,, is illustrated in
Figure 1.

/
n)’ p(n

(z,91)

[I]
bo I bo b1 by bo b1 bp(ny—1b0
I) I | -] | [|

Cm Cm+1 | ... Cmth+l | ... Cmtp(n)

[[[
[b (b1 11 [bp(m)

Figure 1: The circuit D,,

We prove that for the pair (z,y1), where || = n and |y1| = p(n), if there is a yo such that
Fr(z,y1,y2) = 1, then the circuit D,, on input (x,y;) outputs the 39 of the largest lexicographic order
such that Fr(z,y1,y9) = 1. Thus, assume that such a 39 exists and y9 = bjbh - by~ First note
that under the assumption of the existence of yJ, the output by of the circuit C,, is 1. Inductively,
assume that the first h bits bibg - - - by, of Dy, (x,y1) match the prefix bb)--- b} of y3, where b; is the
output of the circuit Cy,4; for 1 < i < h. Consider the (h + 1)-st bit bp41 of Dy, (x,y1), which is
the output of the circuit C,,1+n+1. Note that the first m inputs of C,4p41 are from (z,y;) while the
(m + i)-th input of Cyrqpq1 is the bit b; = b}, for 1 <4 < h. Consider the (h 4 1)-st bit b}, of y§. If
byp1 = 1 then byby---bpbo = b1, --- by b, is a prefix of Y8 (note by = 1). Thus, (z,y1,b1bs - bybo)
is in the language B so the output bp41 of the circuit Cp,yp41 on (z,y1,b1b2 - - - bpbg) should be 1, i.e.,
bhy1 = 0j,q. 105, =0 then byby - - bybg =)b - - - b1 (again note by = 1) cannot be a prefix of any
Yo that makes Fr(x,y1,72) = 1 (otherwise, 9 would not be such a string of the maximum lexicographic
order). Thus, (x,y1,b1b2 - bpbg) is not in the language B so the output bp41 of the circuit Cypypi1
on (x,y1,b1ba---bpby) is 0, which agains gives by = b;H_l. This completes the inductive proof that
biby - by = bibh - b;(n) = 5. In conclusion, if there is a y, such that Fr(x,y1,y2) = 1, then on
the input (x,%), the circuit D,, will output such a y9 of the maximum lexicographic order.

On the other hand, if there is no yo that can make Fp(z,y1,y2) = 1, then for each h > 0, for
any values of byby - --bpbo, (x,y1,b1ba - - - bpbp) is not in the language B. Thus, the output bj,41 of the
circuit Cp,qp41 is 0. Therefore, in this case, the output bibs - - - by of the circuit Dy, is 0P By our

assumption, Fy (x,y;,0P(™) = 0. This proves the following critical fact:

There is a y2 of length p(n) such that Fy (z,y1,y2) = 1if and only if F,(z,y1, D (x,11)) = 1,
where Dy, (z,y1) stands for the output of the circuit D,, on input (z,y1).

Since the circuits Cy,4p, for all h, 0 < h < p(n), have their size bounded by a polynomial of n+p(n)+h <

n + 2p(n), which is also bounded by a polynomial of n, and since p(n) is a polynomial of n, the circuit
D,, has its size bounded by a polynomial of n = |z|.
Note that the circuit D,, works for all y; of length p(n). Recall that the language L is given by

L = {z | Vpy13py2Fr(z, y1,92) = 1}.

Thus, the above observation shows that there is a circuit D,, such that a string x of length n is in L if
and only if for all y1, |y1| = p(n), Fr(x,y1, Dm(z,y1)) = 1.

Now we introduce a new Boolean function F}(z,y1, Ep), where |z| = n, |y1] = p(n), and E,,
is a circuit of m = n + p(n) inputs and p(n) outputs, such that Fj(z,y1, En) = 1 if and only if
Fr(z,y1, En(z,y1)) = 1. The function is certainly computable in polynomial time. Consider the
following language (where p’ is a polynomial that is the size of the circuit D,, given above):

L' ={z |3y E.Npy1 Fi (2,31, E) = 1}

It is obvious that L C L’: for any x € L, we have shown the existence of the circuit D,, such that
Vpy1 Fi (2,91, D) = 1. On the other hand, for any ' € L', |2/| = n, by the definition, there is a circuit
E,, of n+ p(n) inputs and p(n) outputs such that for all y; of length p(n) we have Fy (', y1, En) =1,
which implies F(2',y1, Em(2’,31)) = 1. Note that the output of E,,(2',y1) is a string y2 of length
p(n). Thus, this implies that for each y, there is a yo = Fy,, (¢, y1) such that Fr(2',y1,y2) = 1. Thus,
x satisfies Vpy13py2 Fr (2,91, y2) = 1 so is in L. This proves L’ C L. Therefore, L = L’. Since L’ by its
definition is in X5, we have proved that L is in 5. Since L is an arbitrary language in II5, this proves
5 C 8.

The other direction can be easily derived. Let L’ be a language in X%, then its complement co-L’ is
in II5. By the above result, co-L’ is also in X5. Thus, the complement of co-L’, which is L', is in 1.
This gives ¥ C I15, which completes the proof of ¥5 = 115. [

Before we present the final Karp-Lipton Theorem, we notice the following well-known (and simple)
fact on the polynomial-time hierarchy.

Lemma 3.2 For any integer k > 0, if X)) = X} |, then PH = J;,5, 2} = .

PROOF. It suffices to prove that X2 = ZiHL for all A > 1. We prove this by induction on h. The case
h=1Iis giverp1 as the condition of the lemma. Now consider the general case h > 2. By the definition,
Yhih = NPZ¥k+r-1. By induction, we have Yhino1 = Xy Thus,

S = NP¥in-1 = NP¥ = £

_ yPp
k+1 — Zk'

This completes the proof. [l
Now we are ready to prove the Karp-Liption Theorem.
Theorem 3.3 (Karp-Lipton) If NP C P/poly, then PH = |J, 5, X} = Xa.

PROOF. By Lemma 3.2, it suffices to prove that under the given condition, ¥§ = ¥%.

Let L be a language in X8 = NP5, Thus, L = M, where M; is a nondeterministic polynomial-
time oracle Turing machine that uses an oracle B in X5 = NP> and accepts L. Thus, B = MY, where
My is a nondeterministic polynomial-time oracle Turing machine that uses an oracle C in ¥ = NP and
accepts B. Under the condition NP C P/poly given in the theorem, by Theorem 3.1, 3% = II5. Thus,
the complement B of B is also in 3. Thus, B = M?P , where M3 is a nondeterministic polynomial-time
oracle Turing machine that uses an oracle D in NP and accepts B. We can combine the two oracle
sets C' and D into a single set H = 0C' U 1D, where 0C is the set obtained from C' by inserting a 0 to
the front of each element in C, and 1D is the set obtained from D by inserting a 1 to the front of each
element in D. Since both C and D are in NP, the language 0C' U 1D is also in NP.

Now we construct a new oracle Turing machine M that simulates the machine M; using the oracle
H, as follows. M simulates M; step by step until M; makes a query y on its oracle B. Now the
machine M nondeterministically decides to simulate either Ms or M3 on y. If M is simulating M> and
Ms accepts y (note that Ms is a nondeterministic polynomial-time oracle machine that uses the oracle
C but here in the simulation of My, M queries the elements in 0C' in the oracle H = 0C' U 1D instead),
then M knows that y € B, so M can resume the simulation of M; with an answer “yes” to the query
y. On the other hand, If M is simulating M3 on oracle D and M5 accepts y (in this simulation M
queries the elements in 1D in the oracle H = 0C' U 1D), then M knows that y € B, so y ¢ B and M
can resume the simulation of M; with an answer “no” to the query y. Finally, if the simulation leads
to a rejection of y (no matter in simulation of My or M3), then M simply rejects and stops.

Since all Turing machines My, M, and M3 are nondeterministic and are running in polynomial-
time, the Turing machine M is also nondeterministic and running in polynomial time. Since the oracle
H = 0CU1D is in NP, the language accepted by M with oracle H is in NPNF = Y2, We show that the
machine M with oracle H accepts exactly the language L. For this, we only need to show that on each
query y made by M; on the oracle B, the machine M is always able to get a correct answer to y by its
simulation of Ms or Mj3. In fact, if y € B, then the simulation of Ms by M will have a computational
path that accepts y, which will get a correct answer to the query y and M will continue the simulation
of M; correctly. Similarly, for y ¢ B then a computational path in the simulation of M3 by M get a
correct answer to the query y and M will continue the simulation of M; correctly. Therefore, in all
cases, there is a computational path of M that answers the query y and continues the simulation of M;
correctly. On the other hand, if M is simulating a wrong machine (e.g., if y € B but M is simulating
the machine Ms), or if M is simulating the right machine but on a wrong computational path (e.g., if
y € B and M is simulating Ms but is on a computational path that rejects y), then by our construction
of the Turing machine M, that computational path of M is always stopped and has no impact on
the entire computation of the Turing machine M on z). Since M; accepts the language L, the above
discussion shows that the nondeterministic polynomial-time oracle Turing machine M with the oracle
H in NP also accepts the language L. Therefore, L € NPNF = L. Since L is an arbitrary language in
¥E, this shows ¥ C ¥8 so X5 = X8, Now the theorem follows from Lemma 3.2. [

References

[1] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes,
in Proc. 12th ACM Symposium on Theory of Computing, pp. 302-309, (1980).

[2] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoreticl Computer Science 3-1, 1-22 (1976).

