CSCE-637 Complexity Theory

Lecture #2, October 28, 2020

Lecturer: Professor Jianer Chen

3 The Karp-Lipton Theorem

The complexity class BPP describes a class of computational problems that are "practically feasible" because one may use pseudo-random resources to implement randomized algorithms. Therefore, it becomes extremely interesting to know whether NP can be solved by this model, i.e., whether NP \subseteq BPP. If the answer is positive, then this would provide an exciting approach to solving NP-hard problems in practice. By the previous lecture, we know that BPP is a subclass of P/poly. Thus, NP \subseteq BPP would imply NP \subseteq P/poly. On the other hand, if it can be shown that NP \subseteq P/poly does not hold true or is unlikely, then NP \subseteq BPP also fails or becomes unlikely, thus excluding the possibility of solving NP-hard problems using randomized algorithms.

The purpose of this section is to present a famous result by Karp and Lipton [1] that shows that $NP \subseteq P/poly$ is unlikely.

Recall that the *polynomial-time hierarchy PH* is defined inductively as follows [2]:

$$\begin{split} \Sigma_0^p &= \Pi_0^p = \mathcal{P},\\ \text{for all } k \geq 0, \qquad \Sigma_{k+1}^p &= \mathcal{N}\mathcal{P}^{\Sigma_k^p}, \quad \Pi_{k+1}^p = \text{co-}\Sigma_{k+1}^p, \text{ and}\\ \mathcal{P}\mathcal{H} &= \bigcup_{k \geq 0} \Sigma_k^p. \end{split}$$

In particular, NP = Σ_1^p and coNP = Π_1^p .

It is known [2] that for all $k \geq 1$, a language A is in Σ_k^p if and only if there is a polynomial-time computable Boolean function $F_A(x, y_1, y_2, \dots, y_k)$ and a polynomial p(n) such that:

$$A = \{x \mid \exists_n y_1 \forall_n y_2 \cdots Q_n y_k F_A(x, y_1, y_2, \dots, y_k) = 1\},\$$

where the quantifiers go alternatively between \exists and \forall , starting from \exists . Thus, Q_p is either \exists or \forall depending on the parity of k. The subscript p on each quantifier Q_p means that the quantifier goes through all (binary) strings of length p(|x|). Similarly, a language B is in Π_k^p if and only if there is a polynomial-time computable Boolean function $F_B(x, y_1, y_2, \ldots, y_k)$ and a polynomial q(n) such that:

$$B = \{x \mid \forall_a y_1 \exists_a y_2 \cdots Q_a y_k F_B(x, y_1, y_2, \dots, y_k) = 1\}.$$

It is commonly believed that the polynomial-time hierarchy PH does not collapse, that is, for all $k \geq 0$, we have $\Sigma_{k+1}^p \neq \Sigma_k^p$, or equivalently, PH $\neq \Sigma_k^p$ for any k.

Theorem 3.1 If $NP \subseteq P/poly$, then $\Sigma_2^p = \Pi_2^p$.

PROOF. Let L be a language in Π_2^p . Thus,

$$L = \{x \mid \forall_p y_1 \exists_p y_2 F_L(x, y_1, y_2) = 1\},\$$

where $F_L(x, y_1, y_2)$ is a polynomial-time computable function and p is a polynomial. Without loss of generality, we assume that if y_2 is a string of all 0's, then $F_L(x, y_1, y_2) = 0$ for all x and y_1 (otherwise, we can construct a function that satisfies this condition based on the given function F_L and keep the new function polynomial-time computable).

Consider the following language, where all b_h 's are binary bits:

$$B = \{(x, y_1, b_1 b_2 \cdots b_{i-1}) \mid b_1 b_2 \cdots b_{i-1} 1 \text{ is a prefix of a string } y_2 \text{ such that } F_L(x, y_1, y_2) = 1\}$$

By the definition of the language L, if $F_L(x, y_1, y_2) = 1$, then $|y_1| = p(|x|)$, and $|y_2| = p(|x|)$. Therefore, in the above definition of B, we can assume that $|y_1| = p(|x|)$ and $1 \le i < p(|x|)$. The language B is clearly in NP: on an input $(x, y_1, b_1b_2 \cdots b_{i-1})$, where $|y_1| = p(|x|)$ and $1 \le i < p(|x|)$, we can simply guess p(n) - i binary bits $b'_{i+1}, \ldots, b'_{p(n)}$, let $y_2 = b_1b_2 \cdots b_i 1b'_{i+1}, \ldots, b'_{p(n)}$ then verify that $F_L(x, y_1, y_2) = 1$.

By our assumption NP \subseteq P/poly, we have $B \in$ P/poly. By Theorem 2.1 in Lecture 2, B is accepted by a polynomial-size circuit family $\mathcal{F}_B = \{C_m \mid m \geq 1\}$.

Now fix an input length n, and let m = n + p(n). We construct a circuit D_m that takes a binary string of length m as input and outputs a binary string of length p(n). The purpose here is that for a pair (x, y_1) , where |x| = n and $|y_1| = p(n)$, if there is a y_2 such that $F_L(x, y_1, y_2) = 1$, then the circuit D_m on input (x, y_1) outputs such a y_2 with the largest lexicographic order.

The circuit D_m consists of the p(n)+1 circuits C_m , C_{m+1} , ..., $C_{m+p(n)}$ in the circuit famity \mathcal{F}_B . For each $h \geq 0$, let b_h be the output of the circuit C_{m+h} . The output of D_m is $b_1b_2\cdots b_{p(n)}$. The input of the circuit C_m is (x,y_1) , the same as the input of the circuit D_m . For each h, $0 \leq h \leq p(n)-1$, the circuit C_{m+h+1} has m+h+1 input bits: the first m input bits of C_{m+h+1} are from (x,y_1) , the input of D_m , and the rest h+1 input bits of C_{m+h+1} are $b_1b_2\cdots b_hb_0$. The circuit D_m is illustrated in Figure 1.

Figure 1: The circuit D_m

We prove that for the pair (x, y_1) , where |x| = n and $|y_1| = p(n)$, if there is a y_2 such that $F_L(x, y_1, y_2) = 1$, then the circuit D_m on input (x, y_1) outputs the y_2^0 of the largest lexicographic order such that $F_L(x, y_1, y_2^0) = 1$. Thus, assume that such a y_2^0 exists and $y_2^0 = b_1' b_2' \cdots b_{p(n)}'$. First note that under the assumption of the existence of y_2^0 , the output b_0 of the circuit C_m is 1. Inductively, assume that the first h bits $b_1b_2\cdots b_h$ of $D_m(x,y_1)$ match the prefix $b'_1b'_2\cdots b'_h$ of y_2^0 , where b_i is the output of the circuit C_{m+i} for $1 \le i \le h$. Consider the (h+1)-st bit b_{h+1} of $D_m(x,y_1)$, which is the output of the circuit C_{m+h+1} . Note that the first m inputs of C_{m+h+1} are from (x, y_1) while the (m+i)-th input of C_{m+h+1} is the bit $b_i=b_i'$, for $1\leq i\leq h$. Consider the (h+1)-st bit b_{h+1}' of y_2^0 . If $b'_{h+1} = 1$ then $b_1 b_2 \cdots b_h b_0 = b'_1 b'_2 \cdots b'_h b'_{h+1}$ is a prefix of y_2^0 (note $b_0 = 1$). Thus, $(x, y_1, b_1 b_2 \cdots b_h b_0)$ is in the language B so the output b_{h+1} of the circuit C_{m+h+1} on $(x, y_1, b_1b_2 \cdots b_hb_0)$ should be 1, i.e., $b_{h+1} = b'_{h+1}$. If $b'_{h+1} = 0$ then $b_1 b_2 \cdots b_h b_0 = b'_1 b'_2 \cdots b'_h 1$ (again note $b_0 = 1$) cannot be a prefix of any y_2 that makes $F_L(x, y_1, y_2) = 1$ (otherwise, y_2^0 would not be such a string of the maximum lexicographic order). Thus, $(x, y_1, b_1b_2 \cdots b_hb_0)$ is not in the language B so the output b_{h+1} of the circuit C_{m+h+1} on $(x, y_1, b_1b_2 \cdots b_hb_0)$ is 0, which agains gives $b_{h+1} = b'_{h+1}$. This completes the inductive proof that $b_1b_2\cdots b_{p(n)}=b_1'b_2'\cdots b_{p(n)}'=y_2^0$. In conclusion, if there is a y_2 such that $F_L(x,y_1,y_2)=1$, then on the input (x, y_1) , the circuit D_m will output such a y_2^0 of the maximum lexicographic order.

On the other hand, if there is no y_2 that can make $F_L(x, y_1, y_2) = 1$, then for each $h \ge 0$, for any values of $b_1b_2\cdots b_hb_0$, $(x,y_1,b_1b_2\cdots b_hb_0)$ is not in the language B. Thus, the output b_{h+1} of the circuit C_{m+h+1} is 0. Therefore, in this case, the output $b_1b_2\cdots b_{p(n)}$ of the circuit D_m is $0^{p(n)}$. By our assumption, $F_L(x,y_1,0^{p(n)})=0$. This proves the following critical fact:

There is a y_2 of length p(n) such that $F_L(x, y_1, y_2) = 1$ if and only if $F_L(x, y_1, D_m(x, y_1)) = 1$, where $D_m(x, y_1)$ stands for the output of the circuit D_m on input (x, y_1) .

Since the circuits C_{m+h} for all $h, 0 \le h \le p(n)$, have their size bounded by a polynomial of $n+p(n)+h \le p(n)$

n + 2p(n), which is also bounded by a polynomial of n, and since p(n) is a polynomial of n, the circuit D_m has its size bounded by a polynomial of n = |x|.

Note that the circuit D_m works for all y_1 of length p(n). Recall that the language L is given by

$$L = \{x \mid \forall_p y_1 \exists_p y_2 F_L(x, y_1, y_2) = 1\}.$$

Thus, the above observation shows that there is a circuit D_m such that a string x of length n is in L if and only if for all y_1 , $|y_1| = p(n)$, $F_L(x, y_1, D_m(x, y_1)) = 1$.

Now we introduce a new Boolean function $F'_L(x, y_1, E_m)$, where |x| = n, $|y_1| = p(n)$, and E_m is a circuit of m = n + p(n) inputs and p(n) outputs, such that $F'_L(x, y_1, E_m) = 1$ if and only if $F_L(x, y_1, E_m(x, y_1)) = 1$. The function is certainly computable in polynomial time. Consider the following language (where p' is a polynomial that is the size of the circuit D_m given above):

$$L' = \{x \mid \exists_{p'} E_m \forall_p y_1 F_L'(x, y_1, E_m) = 1\}.$$

It is obvious that $L \subseteq L'$: for any $x \in L$, we have shown the existence of the circuit D_m such that $\forall_p y_1 F'_L(x, y_1, D_m) = 1$. On the other hand, for any $x' \in L'$, |x'| = n, by the definition, there is a circuit E_m of n + p(n) inputs and p(n) outputs such that for all y_1 of length p(n) we have $F'_L(x', y_1, E_m) = 1$, which implies $F_L(x', y_1, E_m(x', y_1)) = 1$. Note that the output of $E_m(x', y_1)$ is a string y_2 of length p(n). Thus, this implies that for each y_1 , there is a $y_2 = E_m(x', y_1)$ such that $F_L(x', y_1, y_2) = 1$. Thus, x satisfies $\forall_p y_1 \exists_p y_2 F_L(x, y_1, y_2) = 1$ so is in x. This proves $x \in x$. Therefore, $x \in x$ is an arbitrary language in $x \in x$. Since $x \in x$ is an arbitrary language in $x \in x$.

The other direction can be easily derived. Let L' be a language in Σ_2^p , then its complement co-L' is in Π_2^p . By the above result, co-L' is also in Σ_2^p . Thus, the complement of co-L', which is L', is in Π_2^p . This gives $\Sigma_2^p \subseteq \Pi_2^p$, which completes the proof of $\Sigma_2^p = \Pi_2^p$. \square

Before we present the final Karp-Lipton Theorem, we notice the following well-known (and simple) fact on the polynomial-time hierarchy.

Lemma 3.2 For any integer $k \ge 0$, if $\Sigma_k^p = \Sigma_{k+1}^p$, then $PH = \bigcup_{h>0} \Sigma_h^p = \Sigma_k$.

PROOF. It suffices to prove that $\Sigma_k^p = \Sigma_{k+h}^p$ for all $h \geq 1$. We prove this by induction on h. The case h=1 is given as the condition of the lemma. Now consider the general case $h \geq 2$. By the definition, $\Sigma_{k+h}^p = \mathrm{NP}^{\Sigma_{k+h-1}^p}$. By induction, we have $\Sigma_{k+h-1}^p = \Sigma_k^p$. Thus,

$$\Sigma_{k+h}^{p} = NP^{\Sigma_{k+h-1}^{p}} = NP^{\Sigma_{k}^{p}} = \Sigma_{k+1}^{p} = \Sigma_{k}^{p}$$

This completes the proof. \square

Now we are ready to prove the Karp-Liption Theorem.

Theorem 3.3 (Karp-Lipton) If $NP \subseteq P/poly$, then $PH = \bigcup_{h>0} \Sigma_h^p = \Sigma_2$.

PROOF. By Lemma 3.2, it suffices to prove that under the given condition, $\Sigma_2^p = \Sigma_3^p$.

Let L be a language in $\Sigma_3^p = \mathrm{NP}^{\Sigma_2^p}$. Thus, $L = M_1^B$, where M_1 is a nondeterministic polynomial-time oracle Turing machine that uses an oracle B in $\Sigma_2^p = \mathrm{NP}^{\Sigma_1^p}$ and accepts L. Thus, $B = M_2^C$, where M_2 is a nondeterministic polynomial-time oracle Turing machine that uses an oracle C in $\Sigma_1^p = \mathrm{NP}$ and accepts B. Under the condition $\mathrm{NP} \subseteq \mathrm{P/poly}$ given in the theorem, by Theorem 3.1, $\Sigma_2^p = \Pi_2^p$. Thus, the complement \overline{B} of B is also in Σ_2^p . Thus, $\overline{B} = M_3^D$, where M_3 is a nondeterministic polynomial-time oracle Turing machine that uses an oracle D in NP and accepts \overline{B} . We can combine the two oracle sets C and D into a single set $H = 0C \cup 1D$, where 0C is the set obtained from C by inserting a 0 to the front of each element in C, and D are in NP , the language $D \cap D$ is also in $D \cap D$. Since both C and D are in D, the language $D \cap D$ is also in $D \cap D$.

Now we construct a new oracle Turing machine M that simulates the machine M_1 using the oracle H, as follows. M simulates M_1 step by step until M_1 makes a query y on its oracle B. Now the machine M nondeterministically decides to simulate either M_2 or M_3 on y. If M is simulating M_2 and M_2 accepts y (note that M_2 is a nondeterministic polynomial-time oracle machine that uses the oracle C but here in the simulation of M_2 , M queries the elements in 0C in the oracle $H = 0C \cup 1D$ instead), then M knows that $y \in B$, so M can resume the simulation of M_1 with an answer "yes" to the query y. On the other hand, If M is simulating M_3 on oracle D and M_3 accepts y (in this simulation M queries the elements in 1D in the oracle $H = 0C \cup 1D$), then M knows that $y \in \overline{B}$, so $y \notin B$ and M can resume the simulation of M_1 with an answer "no" to the query y. Finally, if the simulation leads to a rejection of y (no matter in simulation of M_2 or M_3), then M simply rejects and stops.

Since all Turing machines M_1 , M_2 , and M_3 are nondeterministic and are running in polynomial-time, the Turing machine M is also nondeterministic and running in polynomial time. Since the oracle $H = 0C \cup 1D$ is in NP, the language accepted by M with oracle H is in NP^{NP} = Σ_2^p . We show that the machine M with oracle H accepts exactly the language L. For this, we only need to show that on each query y made by M_1 on the oracle B, the machine M is always able to get a correct answer to y by its simulation of M_2 or M_3 . In fact, if $y \in B$, then the simulation of M_2 by M will have a computational path that accepts y, which will get a correct answer to the query y and M will continue the simulation of M_1 correctly. Similarly, for $y \notin B$ then a computational path in the simulation of M_3 by M get a correct answer to the query y and M will continue the simulation of M_1 correctly. Therefore, in all cases, there is a computational path of M that answers the query y and continues the simulation of M_1 correctly. On the other hand, if M is simulating a wrong machine (e.g., if $y \in B$ but M is simulating the machine M_3), or if M is simulating the right machine but on a wrong computational path (e.g., if $y \in B$ and $y \in B$ is simulating $y \in B$ and $y \in B$ but $y \in B$ and $y \in B$ but is on a computational path that rejects $y \in B$, then by our construction of the Turing machine $y \in B$, the above discussion shows that the nondeterministic polynomial-time oracle Turing machine $y \in B$ with the oracle $y \in B$ is an arbitrary language in $y \in B$, this shows $y \in B$ but $y \in B$. Now the theorem follows from Lemma 3.2. $y \in B$

References

- [1] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, in *Proc. 12th ACM Symposium on Theory of Computing*, pp. 302-309, (1980).
- [2] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoreticl Computer Science 3-1, 1-22 (1976).