
CSCE-637 Complexity Theory

Lecture #2, October 28, 2020

Lecturer: Professor Jianer Chen

3 The Karp-Lipton Theorem

The complexity class BPP describes a class of computational problems that are “practically feasible”
because one may use pseudo-random resources to implement randomized algorithms. Therefore, it
becomes extremely interesting to know whether NP can be solved by this model, i.e., whether NP ⊆
BPP. If the answer is positive, then this would provide an exciting approach to solving NP-hard
problems in practice. By the previous lecture, we know that BPP is a subclass of P/poly. Thus,
NP ⊆ BPP would imply NP ⊆ P/poly. On the other hand, if it can be shown that NP ⊆ P/poly
does not hold true or is unlikely, then NP ⊆ BPP also fails or becomes unlikely, thus excluding the
possibility of solving NP-hard problems using randomized algorithms.

The purpose of this section is to present a famous result by Karp and Lipton [1] that shows that
NP ⊆ P/poly is unlikely.

Recall that the polynomial-time hierarchy PH is defined inductively as follows [2]:

Σp
0 = Πp

0 = P,

for all k ≥ 0, Σp
k+1 = NPΣp

k , Πp
k+1 = co-Σp

k+1, and

PH =
⋃
k≥0

Σp
k.

In particular, NP = Σp
1 and coNP = Πp

1.
It is known [2] that for all k ≥ 1, a language A is in Σp

k if and only if there is a polynomial-time
computable Boolean function FA(x, y1, y2, . . . , yk) and a polynomial p(n) such that:

A = {x | ∃py1∀py2 · · ·QpykFA(x, y1, y2, . . . , yk) = 1},

where the quantifiers go alternatively between ∃ and ∀, starting from ∃. Thus, Qp is either ∃ or ∀
depending on the parity of k. The subscript p on each quantifier Qp means that the quantifier goes
through all (binary) strings of length p(|x|). Similarly, a language B is in Πp

k if and only if there is a
polynomial-time computable Boolean function FB(x, y1, y2, . . . , yk) and a polynomial q(n) such that:

B = {x | ∀qy1∃qy2 · · ·QqykFB(x, y1, y2, . . . , yk) = 1}.

It is commonly believed that the polynomial-time hierarchy PH does not collapse, that is, for all
k ≥ 0, we have Σp

k+1 6= Σp
k, or equivalently, PH 6= Σp

k for any k.

Theorem 3.1 If NP ⊆ P/poly, then Σp
2 = Πp

2.

proof. Let L be a language in Πp
2. Thus,

L = {x | ∀py1∃py2FL(x, y1, y2) = 1},

where FL(x, y1, y2) is a polynomial-time computable function and p is a polynomial. Without loss of
generality, we assume that if y2 is a string of all 0’s, then FL(x, y1, y2) = 0 for all x and y1 (otherwise,
we can construct a function that satisfies this condition based on the given function FL and keep the
new function polynomial-time computable).

Consider the following language, where all bh’s are binary bits:

B = {(x, y1, b1b2 · · · bi−1) | b1b2 · · · bi−11 is a prefix of a string y2 such that FL(x, y1, y2) = 1}

1

By the definition of the language L, if FL(x, y1, y2) = 1, then |y1| = p(|x|), and |y2| = p(|x|). Therefore,
in the above definition of B, we can assume that |y1| = p(|x|) and 1 ≤ i < p(|x|). The language
B is clearly in NP: on an input (x, y1, b1b2 · · · bi−1), where |y1| = p(|x|) and 1 ≤ i < p(|x|), we can
simply guess p(n) − i binary bits b′i+1, . . ., b′p(n), let y2 = b1b2 · · · bi1b′i+1, . . . , b

′
p(n) then verify that

FL(x, y1, y2) = 1.
By our assumption NP ⊆ P/poly, we have B ∈ P/poly. By Theorem 2.1 in Lecture 2, B is accepted

by a polynomial-size circuit family FB = {Cm | m ≥ 1}.
Now fix an input length n, and let m = n + p(n). We construct a circuit Dm that takes a binary

string of length m as input and outputs a binary string of length p(n). The purpose here is that for a
pair (x, y1), where |x| = n and |y1| = p(n), if there is a y2 such that FL(x, y1, y2) = 1, then the circuit
Dm on input (x, y1) outputs such a y2 with the largest lexicographic order.

The circuit Dm consists of the p(n) + 1 circuits Cm, Cm+1, . . ., Cm+p(n) in the circuit famity FB .
For each h ≥ 0, let bh be the output of the circuit Cm+h. The output of Dm is b1b2 · · · bp(n). The input
of the circuit Cm is (x, y1), the same as the input of the circuit Dm. For each h, 0 ≤ h ≤ p(n) − 1,
the circuit Cm+h+1 has m + h + 1 input bits: the first m input bits of Cm+h+1 are from (x, y1), the
input of Dm, and the rest h+ 1 input bits of Cm+h+1 are b1b2 · · · bhb0. The circuit Dm is illustrated in
Figure 1.

Cm

b0

Cm+1

b0

b1

· · · · · · Cm+h+1

b1 bh b0
. . .

bh+1

· · · · · ·

b1 b0bp(n)−1
. . .

Cm+p(n)

bp(n)

(x, y1)

Figure 1: The circuit Dm

We prove that for the pair (x, y1), where |x| = n and |y1| = p(n), if there is a y2 such that
FL(x, y1, y2) = 1, then the circuit Dm on input (x, y1) outputs the y0

2 of the largest lexicographic order
such that FL(x, y1, y

0
2) = 1. Thus, assume that such a y0

2 exists and y0
2 = b′1b

′
2 · · · b′p(n). First note

that under the assumption of the existence of y0
2 , the output b0 of the circuit Cm is 1. Inductively,

assume that the first h bits b1b2 · · · bh of Dm(x, y1) match the prefix b′1b
′
2 · · · b′h of y0

2 , where bi is the
output of the circuit Cm+i for 1 ≤ i ≤ h. Consider the (h + 1)-st bit bh+1 of Dm(x, y1), which is
the output of the circuit Cm+h+1. Note that the first m inputs of Cm+h+1 are from (x, y1) while the
(m + i)-th input of Cm+h+1 is the bit bi = b′i, for 1 ≤ i ≤ h. Consider the (h + 1)-st bit b′h+1 of y0

2 . If
b′h+1 = 1 then b1b2 · · · bhb0 = b′1b

′
2 · · · b′hb′h+1 is a prefix of y0

2 (note b0 = 1). Thus, (x, y1, b1b2 · · · bhb0)
is in the language B so the output bh+1 of the circuit Cm+h+1 on (x, y1, b1b2 · · · bhb0) should be 1, i.e.,
bh+1 = b′h+1. If b′h+1 = 0 then b1b2 · · · bhb0 = b′1b

′
2 · · · b′h1 (again note b0 = 1) cannot be a prefix of any

y2 that makes FL(x, y1, y2) = 1 (otherwise, y0
2 would not be such a string of the maximum lexicographic

order). Thus, (x, y1, b1b2 · · · bhb0) is not in the language B so the output bh+1 of the circuit Cm+h+1

on (x, y1, b1b2 · · · bhb0) is 0, which agains gives bh+1 = b′h+1. This completes the inductive proof that
b1b2 · · · bp(n) = b′1b

′
2 · · · b′p(n) = y0

2 . In conclusion, if there is a y2 such that FL(x, y1, y2) = 1, then on

the input (x, y1), the circuit Dm will output such a y0
2 of the maximum lexicographic order.

On the other hand, if there is no y2 that can make FL(x, y1, y2) = 1, then for each h ≥ 0, for
any values of b1b2 · · · bhb0, (x, y1, b1b2 · · · bhb0) is not in the language B. Thus, the output bh+1 of the
circuit Cm+h+1 is 0. Therefore, in this case, the output b1b2 · · · bp(n) of the circuit Dm is 0p(n). By our

assumption, FL(x, y1, 0
p(n)) = 0. This proves the following critical fact:

There is a y2 of length p(n) such that FL(x, y1, y2) = 1 if and only if FL(x, y1, Dm(x, y1)) = 1,
where Dm(x, y1) stands for the output of the circuit Dm on input (x, y1).

Since the circuits Cm+h for all h, 0 ≤ h ≤ p(n), have their size bounded by a polynomial of n+p(n)+h ≤

2

n + 2p(n), which is also bounded by a polynomial of n, and since p(n) is a polynomial of n, the circuit
Dm has its size bounded by a polynomial of n = |x|.

Note that the circuit Dm works for all y1 of length p(n). Recall that the language L is given by

L = {x | ∀py1∃py2FL(x, y1, y2) = 1}.

Thus, the above observation shows that there is a circuit Dm such that a string x of length n is in L if
and only if for all y1, |y1| = p(n), FL(x, y1, Dm(x, y1)) = 1.

Now we introduce a new Boolean function F ′L(x, y1, Em), where |x| = n, |y1| = p(n), and Em

is a circuit of m = n + p(n) inputs and p(n) outputs, such that F ′L(x, y1, Em) = 1 if and only if
FL(x, y1, Em(x, y1)) = 1. The function is certainly computable in polynomial time. Consider the
following language (where p′ is a polynomial that is the size of the circuit Dm given above):

L′ = {x | ∃p′Em∀py1F
′
L(x, y1, Em) = 1}.

It is obvious that L ⊆ L′: for any x ∈ L, we have shown the existence of the circuit Dm such that
∀py1F

′
L(x, y1, Dm) = 1. On the other hand, for any x′ ∈ L′, |x′| = n, by the definition, there is a circuit

Em of n+ p(n) inputs and p(n) outputs such that for all y1 of length p(n) we have F ′L(x′, y1, Em) = 1,
which implies FL(x′, y1, Em(x′, y1)) = 1. Note that the output of Em(x′, y1) is a string y2 of length
p(n). Thus, this implies that for each y1, there is a y2 = Em(x′, y1) such that FL(x′, y1, y2) = 1. Thus,
x satisfies ∀py1∃py2FL(x, y1, y2) = 1 so is in L. This proves L′ ⊆ L. Therefore, L = L′. Since L′ by its
definition is in Σp

2, we have proved that L is in Σp
2. Since L is an arbitrary language in Πp

2, this proves
Πp

2 ⊆ Σp
2.

The other direction can be easily derived. Let L′ be a language in Σp
2, then its complement co-L′ is

in Πp
2. By the above result, co-L′ is also in Σp

2. Thus, the complement of co-L′, which is L′, is in Πp
2.

This gives Σp
2 ⊆ Πp

2, which completes the proof of Σp
2 = Πp

2.

Before we present the final Karp-Lipton Theorem, we notice the following well-known (and simple)
fact on the polynomial-time hierarchy.

Lemma 3.2 For any integer k ≥ 0, if Σp
k = Σp

k+1, then PH =
⋃

h≥0 Σp
h = Σk.

proof. It suffices to prove that Σp
k = Σp

k+h for all h ≥ 1. We prove this by induction on h. The case
h = 1 is given as the condition of the lemma. Now consider the general case h ≥ 2. By the definition,
Σp

k+h = NPΣp
k+h−1 . By induction, we have Σp

k+h−1 = Σp
k. Thus,

Σp
k+h = NPΣp

k+h−1 = NPΣp
k = Σp

k+1 = Σp
k.

This completes the proof.

Now we are ready to prove the Karp-Liption Theorem.

Theorem 3.3 (Karp-Lipton) If NP ⊆ P/poly, then PH =
⋃

h≥0 Σp
h = Σ2.

proof. By Lemma 3.2, it suffices to prove that under the given condition, Σp
2 = Σp

3.

Let L be a language in Σp
3 = NPΣp

2 . Thus, L = MB
1 , where M1 is a nondeterministic polynomial-

time oracle Turing machine that uses an oracle B in Σp
2 = NPΣp

1 and accepts L. Thus, B = MC
2 , where

M2 is a nondeterministic polynomial-time oracle Turing machine that uses an oracle C in Σp
1 = NP and

accepts B. Under the condition NP ⊆ P/poly given in the theorem, by Theorem 3.1, Σp
2 = Πp

2. Thus,
the complement B of B is also in Σp

2. Thus, B = MD
3 , where M3 is a nondeterministic polynomial-time

oracle Turing machine that uses an oracle D in NP and accepts B. We can combine the two oracle
sets C and D into a single set H = 0C ∪ 1D, where 0C is the set obtained from C by inserting a 0 to
the front of each element in C, and 1D is the set obtained from D by inserting a 1 to the front of each
element in D. Since both C and D are in NP, the language 0C ∪ 1D is also in NP.

3

Now we construct a new oracle Turing machine M that simulates the machine M1 using the oracle
H, as follows. M simulates M1 step by step until M1 makes a query y on its oracle B. Now the
machine M nondeterministically decides to simulate either M2 or M3 on y. If M is simulating M2 and
M2 accepts y (note that M2 is a nondeterministic polynomial-time oracle machine that uses the oracle
C but here in the simulation of M2, M queries the elements in 0C in the oracle H = 0C ∪ 1D instead),
then M knows that y ∈ B, so M can resume the simulation of M1 with an answer “yes” to the query
y. On the other hand, If M is simulating M3 on oracle D and M3 accepts y (in this simulation M
queries the elements in 1D in the oracle H = 0C ∪ 1D), then M knows that y ∈ B, so y 6∈ B and M
can resume the simulation of M1 with an answer “no” to the query y. Finally, if the simulation leads
to a rejection of y (no matter in simulation of M2 or M3), then M simply rejects and stops.

Since all Turing machines M1, M2, and M3 are nondeterministic and are running in polynomial-
time, the Turing machine M is also nondeterministic and running in polynomial time. Since the oracle
H = 0C ∪1D is in NP, the language accepted by M with oracle H is in NPNP = Σp

2. We show that the
machine M with oracle H accepts exactly the language L. For this, we only need to show that on each
query y made by M1 on the oracle B, the machine M is always able to get a correct answer to y by its
simulation of M2 or M3. In fact, if y ∈ B, then the simulation of M2 by M will have a computational
path that accepts y, which will get a correct answer to the query y and M will continue the simulation
of M1 correctly. Similarly, for y 6∈ B then a computational path in the simulation of M3 by M get a
correct answer to the query y and M will continue the simulation of M1 correctly. Therefore, in all
cases, there is a computational path of M that answers the query y and continues the simulation of M1

correctly. On the other hand, if M is simulating a wrong machine (e.g., if y ∈ B but M is simulating
the machine M3), or if M is simulating the right machine but on a wrong computational path (e.g., if
y ∈ B and M is simulating M2 but is on a computational path that rejects y), then by our construction
of the Turing machine M , that computational path of M is always stopped and has no impact on
the entire computation of the Turing machine M on x). Since M1 accepts the language L, the above
discussion shows that the nondeterministic polynomial-time oracle Turing machine M with the oracle
H in NP also accepts the language L. Therefore, L ∈ NPNP = Σp

2. Since L is an arbitrary language in
Σp

3, this shows Σp
3 ⊆ Σp

2 so Σp
3 = Σp

2. Now the theorem follows from Lemma 3.2.

References

[1] R. Karp and R. Lipton, Some connections between nonuniform and uniform complexity classes,
in Proc. 12th ACM Symposium on Theory of Computing, pp. 302-309, (1980).

[2] L. J. Stockmeyer, The polynomial-time hierarchy, Theoreticl Computer Science 3-1, 1-22 (1976).

4

