
CSCE-637 Complexity Theory

Lecture #2, October 22, 2020

Lecturer: Professor Jianer Chen

2 The classes BPP and P/poly

We will be mainly focused on languages, which are simply sets or decision problems (i.e., the yes-
instances of a decision problem make the set of our interest). We assume that all set elements in
our discussion are encoded in binary strings. Therefore, the length of an element x really refers to
its bitlength, i.e., the length of its binary encoding, even the string x may be given in non-binary
representation in our description. Note that this assumption losses no generality since the length of
encoding in any fixed alphabet set is bounded by a constant times the length of binary encoding. As
a result, sometimes we will also call an element a binary string.

A Boolean circuit Cn with n inputs x1, · · · , xn is a directed acyclic graph in which each node has
fan-in (i.e., in-degree) either 0 or 2. The nodes of fan-in 0 are input nodes and are labeled from the set
{0, 1, x1, x1, · · · , xn, xn}. The nodes of fan-in 2 are called gates and are labeled either ∨ or ∧. A set of
the nodes is designated the output nodes. Note that we do not have “negation-gates”. Any circuit can
be easily converted into this form by De Morgan’s Law. The size is the number of gates, and the depth
is the maximum distance from an input to an output. Each node in a circuit of size s has a unique
node number of length O(log s). We assume that circuits are topologically ordered in the sense that
the node number of a gate is always larger than the node numbers of its inputs.

A family of circuits is a sequence F = {Cn | n ≥ 1} of circuits, where circuit Cn has n inputs and
one output. A family of circuits can be used to accept a language L in {0, 1}∗ such that for all n, a
binary string x of length n is in L if and only if Cn(x) = 1, i.e., the output of the circuit Cn has value
1 when the input to Cn is x. The circuit family F is of polynomial size if there is a polynomial p(n)
such that the size of the circuit Cn is bounded by p(n) for all n.

Definition 2.1 An oracle Turing machine M with an oracle set A is a standard Turing machine plus
an oracle tape such that when a string y is written on the oracle tape (by M), the machine M can
enter a query state that asks the membership of y in the oracle set A, and in a single step M gets the
answer to the query (i.e., “yes, y ∈ A” or “no, y 6∈ A′′).

Note that an oracle Turing machine can be in any of the modes we have encountered in our study
of regular Turing machines. Thus, an oracle Turing machine can be deterministic, nondeterministic, or
probabilistic. The time and space complexity of an oracle Turing machine are those spent by the oracle
Turing machine, but not including those used in oracle queries. Thus, the space used in the oracle tape
does not count as the space used by the oracle Turing machine, and the time spent on each query counts
as a single step of the oracle Turing machine (however, the time spent by the oracle Turing machine on
writing query strings in the oracle tape does count as the time for the oracle Turing machine). These
conventions allow us to define the time and space complexity of oracle Turing machines.

Definition 2.2 A language L is Turing reducible to another language A, written as L ≤p
T A, if L is

accepted by a deterministic polynomial-time oracle Turing machine that uses A as its oracle set.

Turing reducibility was originally used by Steven Cook in his famous proof that the Satisfiability
problem is NP-complete (under Turing reducibility). Thus, Turing reducibility is also called Cook-
reducibility. Under Turing reducibility, we can similarly define NP-hardness and NP-completeness: a
language L is NP-hard under Turing reducibility if every language in NP is Turing reducible to L, and
is NP-complete under Turing reducibility if in addition L is in NP. It is easy to see that if a language
L is Karp-reducible to a language A (i.e., under the polynomial-time many-one reducibility), then L
is also Turing reducible to A. Therefore, any NP-hard (resp. NP-complete) problem under Karp-
reducibility, as we studied in Analysis of Algorithms, remains NP-hard (resp. NP-complete) under

16

Turing reducibility. On the other hand, whether there are languages L and A such that L is Turing
reducible to A but not Karp-reducible to A has remained as a well-known open problem in complexity
theory.

Definition 2.3 A language S in {0, 1}∗ is sparse if there is a polynomial p(n) such that for all n, the
number of elements of length n in S is bounded by p(n).

Note that in the above definition, this is equivalent to define a sparse set S by restricting the number
of elements of length less than or equal to n in S to be bounded by a fixed polynomial of n.

Now we give our final definition in this section.

Definition 2.4 A language L is in the class P/poly if there is a function h(n) whose length |h(n)| is
bounded by a polynomial of n, such that there is a deterministic polynomial-time Turing machine Md

that on input 〈x, h(|x|)〉 decides if x ∈ L.

We remark that the existence of the Turing machine Md in the above definition does not mean
that the language {〈x, h(|x|)〉 | x ∈ L} is in P. In fact, the function h(n) can be very complicated and
checking whether a given binary string is a value of h(n) for some n can be extremely difficult.

As an example, we show that the important complexity class BPP is a subclass of P/poly. Let L be
a language in BPP. By the definition, there is a probabilistic polynomial-time Turing machine M that
on any input x makes a correct decision (i.e., x ∈ L or x 6∈ L) with a probability at least 1

2 + ε, where
ε > 0 is a constant. Without loss of generality, we can assume ε < 1

2 (otherwise M is a deterministic
Turing machine, and L is in P).

We first construct a new probabilistic Turing machine M2t that accepts L: on an input x, the Turing
machine M2t simulates the machine M on the input x 2t times, then takes the majority outcomes of
the 2t simulations as its decision. We analysis the probability that the machine M2t makes mistakes.

Consider an arbitrary input x of length n. By the definition, the Turing machine M on the input
x makes a correct decision with a probability equal to 1 + εx, where 1

2 ≥ εx ≥ ε is a fixed constant for
the input x.

When the decision of M2t on x is incorrect, then only i of the 2t simulations of M on x are
correct, where i ≤ t. Fix the positions of these i incorrect simulations. Then the probability that
exactly these i simulations of M on x are correct (and the rest 2t − i simulations are all incorrect) is(
1
2 + εx

)i (1
2 − εx

)2t−i
. Since there are

(
2t
i

)
ways to pick i positions in the 2t simulations, the probability

that exactly i simulations, on any positions, of M on x are correct and the rest 2t− i simulations are

all incorrect is
(
2t
i

) (
1
2 + εx

)i (1
2 − εx

)2t−i
. Since when i ≤ t, the machine M2t outputs an incorrect

conclusion, the probability that the machine M2t gives an incorrect conclusion is

t∑
i=0

(
2t

i

)(
1

2
+ εx

)i(
1

2
− εx

)2t−i

.

17

Now play some simple mathematics.

t∑
i=0

(
2t

i

)(
1

2
+ εx

)i(
1

2
− εx

)2t−i

=

t∑
i=0

(
2t

i

)(
1

2
+ εx

)t(
1

2
− εx

)t(
1/2− εx
1/2 + εx

)t−i

≤
t∑

i=0

(
2t

i

)(
1

4
− ε2x

)t

=

(
1

4
− ε2x

)t t∑
i=0

(
2t

i

)

≤
(

1

4
− ε2x

)t
22t

2

≤
(
1− (2εx)2

)t
Since 1

2 ≥ εx ≥ ε > 0, 1− (2εx)2 is a constant such that satisfies 0 ≤ 1− (2εx)2 ≤ 1− (2ε)2 = c < 1,
where c = 1 − (2ε)2 is a constant that is independent of x . Thus, on the input x, the probabilistic
Turing machine M2t makes mistake with a probability bounded by (1− (2εx)2)t ≤ ct. Now for input x
of length n, let t = d(n+ 1)/ log(1//c)e, then the probability that M2t makes mistake on x is bounded
by 1/2n+1. Note that this probability error bound 1/2n+1 holds true for all inputs of length n. Since
the Turing machine M is polynomial-time bounded, the Turing machine M2t also has its running time
bounded by a polynomial q(n) of n on all inputs of length n. Thus, the computation of M2t on an
input x of length n can be depicted as a complete binary tree T of 2q(n) leaves such that at most
2q(n)/2n+1 of the leaves in T correspond to the computations that conclude incorrectly. Since there
are totally 2n inputs of length n (recall that all elements are encoded in binary), there are at most
2n · 2q(n)/2n+1 = 2q(n)/2 leaves in T that would conclude incorrectly on some input of length n. In
other words, at least one half of the leaves in T will always conclude correctly on all inputs of length
n. Let l be any one of these always-correct leaves. Then by following the computational path Pn from
the root to l in the tree T , we will always reach a correct conclusion on any input of length n.

Note that the length of the computational path Pn is q(n). Thus, Pn can be encoded into a binary
string h(n) = bin(Pn), whose length |h(n)| is bounded by a polynomial of n. Now using the probabilistic
Turing machine M2t and the computation path Pn, we can construct a deterministic Turing machine
Md as follows. On an input 〈x, h(|x|)〉, the Turing machine Md simulates the probabilistic Turing
machine M2t on x. However, when the machine M2t tries to make a randomized branch, the machine
Md consults the path Pn to decide which branch to go. The Turing machine Md concludes with x ∈ L
if and only if the computational path Pn of M on x leads to a leave that accepts x. By the above
discussion, the computational path Pn of M on x always leads to a correct conclusion of M . Thus,
the Turing machine Md on input 〈x, h(|x|)〉 always concludes correctly on the membership of x in L.
Moreover, the Turing machine Md is obviously deterministic and runs in polynomial time.

Now the function h(n) = bin(Pn) whose length is bounded by a polynomial of n and the deterministic
polynomial-time Turing machine Md show that the language L is in P/poly. Since L is an arbitrary
language in BPP, this proves the following theorem.

Theorem 2.1 BPP ⊆ P/poly.

The complexity class BPP has drawn very significant attention in the research in computer science,
from both theoretical and practical research in computation. We will study the relationship between
BPP and the advice model. In the following, we first give several equivalent definitions of the class
P/poly

Theorem 2.2 Let L be a language. The following statements are equivalent:

18

(1) L is accepted by a polynomial-size circuit family;
(2) L ∈ P/poly;
(3) L is Turing reducible to a sparse set A.

proof. We first prove that (1) and (2) are equivalent, then show that (2) and (3) are equivalent.
(1) ⇐⇒ (2): Suppose that L is accepted by a polynomial-size circuit family {Cn | n ≥ 0}, where

for all n, the size of the circuit Cn is bounded by a polynomial of n. Then, the length of the binary
encoding h(n) = bin(Cn) of the circuit Cn is also bounded by a polynomial of n. Now it is easy
to construct a deterministic polynomial-time Turing machine Md such that on the input 〈x, h(|x|)〉,
where h(|x|) = bin(C|x|), Md determines whether the circuit C|x| accepts the input x, thus, determines
whether x ∈ L. The function h(n) and the Turing machine Md show that L ∈ P/poly.

Conversely, suppose that L ∈ P/poly. Then there is a function h(n) whose length |h(n)| is bounded
by a polynomial of n, such that there is a deterministic polynomial-time Turing machine Md that
on input 〈x, h(|x|)〉 determines whether x ∈ L. By a well-known result in complexity theory [?], the
language accepted by Md is accepted by a (polynomial-time uniform) circuit family F = {Cm | m ≥ 0},
where for all m, the size of the circuit Cm is bounded by a fixed polynomial of m. Since |h(n)| is bounded
by a polynomial of n, the length m of the pair 〈x, h(|x|)〉 is bounded by a polynomial of |x|. Therefore,
the size of the circuit Cm that is for all the inputs 〈x, h(|x|)〉 of length m = n+ |h(n)|, where n = |x|, is
bounded by a polynomial of n. Note that for all strings x of length n, the corresponding pair 〈x, h(|x|)〉
have the same length thus are handled by the same circuit Cm in F . Thus, the pair 〈x, h(|x|)〉 is
accepted by the corresponding circuit Cm if and only if x ∈ L. Now if we assign the value h(|x|) to
the corresponding inputs in Cm, we get a circuit C ′n with n inputs such that C ′n accepts x of length
n if and only if x ∈ L. Therefore, the circuit family F ′ = {C ′n | n ≥ 0} accepts the language L. As
we explained above, the size of the circuit C ′n, which is roughly the same as that of the corresponding
circuit Cm in F , is bounded by a polynomial of n. This proves that the language L is accepted by a
polynomial-size circuit family.

This completes the proof for (1)⇐⇒ (2).
(2) ⇐⇒ (3): Suppose that L ∈ P/poly. Thus, there is a function h(n) whose length |h(n)| is

bounded by a polynomial p(n) of n and there is a deterministic polynomial-time Turing machine Md

that on input 〈x, h(|x|)〉 determines whether x ∈ L. Now define a set B by

B = {1n#1p
2(n)#b | b is a prefix of h(n)}.

Note that the set B is (very) sparse: for each length m = 2+n+p2(n)+l, where 0 ≤ l ≤ p(n), there is at

most one element 1n#1p
2(n)#b of length m in B, where b is of length l and is a prefix of h(n).1 Now we

construct a deterministic oracle Turing machine M2 that uses the oracle B and accepts the language L,
as follows: on an input x of length n, M2 starts with the string s0 = 1n#1p

2(n)#. Inductively, assume
that M2 has constructed a string si = 1n#1p

2(n)#bi in B, where bi is of length i and is a prefix of
h(n). Then M2 queries the oracle B to find a symbol σ such that siσ = 1n#1p

2(n)#biσ is in B (so biσ
is a prefix of h(n)), then let si+1 = siσ (if no such a symbol σ exists, then bi = h(n)). Since |h(n)| is
bounded by the polynomial p(n), the oracle machine M2 can construct the function h(n) in polynomial
time, then call the Turing machine Md on 〈x, h(n)〉 to decide if x is in L. The machine Md runs in time
polynomial in the length of 〈x, h(n)〉, which is bounded by a polynomial of |x|. As a result, the oracle
Turing machine M2 uses the sparse oracle B, runs in time polynomial in n, and accepts the language
L. This proves that the language L is Turing reducible to the sparse set B.

Conversely, suppose that a language L is accepted by a deterministic oracle Turing machine M1

with a sparse oracle set B such that the running time of M1 is bounded by a polynomial p1(n) of n
and for all m, the number of elements of length m in the oracle set B is bounded by a polynomial
p2(m) of m. For each m ≥ 0, let the elements of length m in B be xm,1, xm,2, . . ., xm,t, where
t ≤ p2(m). Define sm = xm,1#xm,2# · · ·#xm,t, and let h(n) = s1&s2& · · ·&sp1(n). Note that for each

1Without loss of generality (otherwise we pick a larger polynomial), we can assume that the polynomial p(n) satisfies
the condition p2(n + 1) + (n + 1) + 2 > p2(n) + n + 2 + p(n). Thus, for two different lengths n and h, two strings of the

forms 1n#1p
2(n)#b and 1h#1p

2(h)#b′ in B, where |b| ≤ p(n) and |b′| ≤ p(h), cannot have the same length.

19

m, |sm| = O(mp2(m)), so |h(n)| = O(p1(n) · p1(n)p2(p1(n))) = O(p3(n)), where p3(n) is a polynomial
of n. Now we construct a another deterministic Turing machine M2 that uses no oracle. On an input
〈x, h(n)〉, where n = |x| and |h(n)| = O(p3(n)), M2 simulates the oracle Turing machine M1 on the
input x step by step except that when M1 makes a query y to the oracle B, M2 instead searches y in
the string h(n) to decide if y ∈ B. Since M1 runs in time p1(n) on the input x of length n, the length of
the query string y cannot be larger than p1(n) while h(n) contains all si upto i = p1(n). Thus, we can
always correctly decide if y ∈ B by searching h(n) in time O(|h(n)|). Thus a query step of M1 can be
simulated by M2 in time O(|h(n)|). Since M1 runs in time bounded by p1(n), the machine M2 on input
〈x, f(n)〉 runs in time O(p1(n) · |h(n)|) and decides if x ∈ L. Since p1(n) ≤ |h(n)|, and |h(n)| ≤ p3(n),
the running time O(p1(n) · |h(n)|) of M2 is bounded by a polynomial of n. Now the function h(n) and
the deterministic Turing machine Md show that L ∈ P/poly.

This completes the proof for (1)⇐⇒ (2), thus completes the proof of the theorem.

20

References

[1] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H.Freeman and Company, New York, 1979.

[2] N. Immerman, Nondeterministic space is closed under complementation, SIAM Journal on Com-
puting 17, 935-938 (1988).

[3] C. Papadimitriou, Computational Complexity, Addison Wesley, Reading, Mass., (1994).

21

