
INFORMATION AND CONTROL 58, 113--136 (1983)

Parallel Computation for Well-Endowed Rings
and Space-Bounded Probabilistic Machines

A. BORODIN AND S. COOK

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada M5S 1A4

AND

N. PIPPENGER

IBM Corporation, 5600 Cottle Road, San Jose, California 95193

It is shown that a probabilistic Turing acceptor or transducer running within
space bound S can be simulated by a time S 2 parallel machine and therefore by a
space S 2 deterministic machine. (Previous simulations ran in space $6.) In order to
achieve these simulations, known algorithms are extended for the computation of
determinants in small arithmetic parallel time to computations having small
Boolean parallel time, and this development is applied to computing the completion
of stochastic matrices. The method introduces a generalization of the ring of
integers, called well-endowed rings. Such rings possess a very efficient parallel
implementation of the basic (+, - , ×) ring operations.

1. INTRODUCTION

Gill (1977) introduced the concept of language acceptance by space-

bounded probabi l is t ic Turing machines, and showed that such machines with
space bound S could be s imulated by determinist ic machines with space
bound exp O(S). Simon (198 l a) improved this result to achieve a s imulat ion
within determinist ic space bound S 6. In this paper, we shall again improve
this result so as to achieve a s imulat ion within determinist ic space bound S 2.
Our result can then be viewed as a general izat ion of Savitch 's (1970)
s imulat ion of space-bounded nondeterminis t ic machines, since nondeter-
ministic computa t ions can be viewed as a special case of Gi l l ' s probabi l is t ic
computat ions. It is, o f course, a long standing open problem as to whether or
not Savitch 's result can be improved.

Our determinist ic space bound S 2 also applies to the simulat ion of
probabi l is t ic Turing t ransducers bounded by space S. The previous best
determinist ic s imulat ion bounds for such t ransducers were first space S 36,

113
0019-9958/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.

114 BORODIN, COOK, AND PIPPENGER

due to Gill, Hunt, and Simon (1980), later improved to space S 6 by Hunt
(1978).

We choose to carry out our development within the context of parallel
computation (by uniform families of Boolean circuits), the relation between
parallel computation and space-bounded computation having already been
established (see, e.g., Borodin (1977) for parallel computation by Boolean
circuits). We only need to note that a function computable in depth S can be
computed in deterministic space S, but apparently not conversely. Pippenger
(1979) introduced the class N C k, as those functions computable by Boolean
circuits whose depth and size are (simultaneously) bounded by O((log n) k)
and n °~1), respectively, where n is the number of inputs.

It turns out that the class N C = Uk>~oNC k is a very stable class, quite
independent of the choice of any "reasonable" parallel model of computation
(see, e.g., Cook, 1981). The classes ArC 1 and N C 2 are of particular interest,
even though the definition of these classes does depend on the choice of
model; i.e., Boolean circuits.

In terms of circuits, the complexity of the basic ring operations of +, - , ×
for the integers has been well studied (see Savage, 1976); in particular it is
known that these operations can all be realized within N C 1. If one insists on
a nonredundant representation for the integers, then Winograd (1965; 1967)
shows that a constant-depth implementation for addition is impossible.
However, if one allows a redundant representation, then a constant depth
implementation for addition is known (Avizienis, 1961).

In order to achieve our simulation of probabilistic machines, we need to
utilize a representation which makes possible N C ° and N C ~ representations
for + and × (respectively) and apply this to the problem of computing the
determinant. Simply stated, there are known arithmetic circuits (see
Berkowitz, 1982) for the determinant which have O((logn) 2) depth of
additions but only O(log n) depth of multiplications, and the determinant is
central to all the known simulations of space bounded probabilistic
machines. It turns out that there are sufficiently many details to warrant a
careful and somewhat abstract development.

We are thus led in Sections 2 and 3 to introduce the concept of a well-
endowed ring. Such rings have representations in which addition and
multiplication can be very efficiently implemented; that is, in N C ° and NC 1,
respectively. The development is used to extend known implementations to
polynomial and matrix rings. We then apply these results in section 4 to the
Boolean complexity of computing the determinant to obtain an N C 2
implementation. We use this in Section 5 when we establish an N C 2
implementation for the problem of computing the completion of a stochastic
matrix. Finally, Section 6 applies the previous results to establish the desired
simulation of probabilistic space-bounded machines.

The reader, not interested in the development o f well-endowed rings, who

PARALLEL COMPUTATION FOR RINGS 1 15

is willing to accept Corollary 4.4 (stating that determinants over rational
functions are in NCZ), can skip direetly to Section 5.

Motivated by a seminar talk by Simon, our depth O(S 2) simulation of an
O(S) space-bounded probabilistic acceptor was originally obtained in the
spring of 1978, and referred to in (Simon et al., 1978). In 1981, Jung (1981)
independently obtained an O(S 2) deterministic space bounded simulation in
which matrix powers were computed using modular techniques instead of
redundant notation.

2. WELL-ENDOWED RINGS

Briefly, a well-endowed ring is one in which elements can be represented
by bit strings in such a way that addition can be computed in constant depth
and multiplication can be computed in depth O(log n). The representation
can be redundant, but it must be succinct in the sense that "small" ring
elements have short representative bit strings. Thus ring elements must have
a notion of size, or length.

Formally, let d be a ring (not necessarily commutative, and not
necessarily with unity). Let J be the monoid (semigroup) of natural
numbers under addition. A length funetion for d is a function a: ~ ~
satisfying

(1) a(x +y) ~ max{a(x),a(y)} + O(1)

(2) a(xy) ~ a(x) + a(y) + O(log max{a(x), a(y)})

for all x iand y in d . For brevity, we shall say "the ring (d , a)" to mean
"the ring ~¢~ with length function a."

Let ~ be the ring of integers. Let p >/ 2 be a natural number. It is easy to
verify that ~(x)= [logp([x I + 1)] (the number of p-ary digits needed to
represent x) is a length function for 7/. In fact, ~ satisfies a stronger
inequality than (2), namely ~(xy)<~(x)+~(y). However, the weaker
inequality is needed for polynomial rings and other examples.

From (1) and (2) it follows that

(3) a(Y~l<~i~nxi) <~ maxl~i~<n a(xi) + O(log n)

(4) a(]71<<.i<.,xi) ~ Zl<~i<~n a(Xi) @ O(n(log n + log maxl<i< . a(xi))).

These formulas are proved by induction, using balanced binary trees to
compute the sum and product.

Let f : d - ~ . ~ be a map from the ring (d , a) to the ring (~,f l) . A bound
function f o r f i s a function ¢i: N ~ Ll such that

fl(f(x)) <~ O(a(x))

1 16 BORODIN, COOK, AND PIPPENGER

for all x in ~¢'. More generally, if k is a natural number and f : d k -~ 5? then
O should satisfy

f l (f (x l x~)) ~< ¢(maxIa(xO,... , a(Xk)})

for all x I x k in d . For brevity, we shall say "the map (f, ~)" to mean
"the map f with bound function O."

For a ring (~¢, a) and a natural number n, we shall let ~¢~, denote the set
of elements x in J such that a(X) <~ n.

A representation for a ring (d , a) is a pair (l, r) comprising a function
I : N ~ N and a sequence r = { r l , r 2 } of functions such that
r , : {0, 1 } 1 (") ~ d and ~ is included in r~({0, 1} l(")) for all n in N. A
representation (/, r) will be called succinct if I (n) = n °~1) (i.e., if l(n) is
bounded above by a polynomial in n), and uniform if for all x E d there is a
log-space uniform sequence {u~, u z } such that u k is in {0, 1} t(~(x)+k) and
r~(x)+k(Uk)=X for all k/> 1. (Here log-space uniform means that some
Turing machine can, for all k, generate u k on a write-only output tape using
workspace O(log]uk]).) For brevity, we may say "the ring (J , a, l, r)" to
mean "the ring (d , a) with representation (l, r)."

An implementation for a map (fi O) from a ring (d , a, l, r) to a ring
(5?,fl, m,s) is a sequence F = {F1,F 2 } of functions such that
F , : {0, 1 }t(,) ~ {0, 1 }mt~(")) and

S ,~,~(Fn(U)) =f (r , (u))

for all n in N and u in {0, 1 }t(n). The notion of implementation applies to the
more general case f: d k ~ 57 in the obvious way.

For a natural number k, an implementation F will be said to be in NC ~ if
there is a log-space uniform sequence N = {N~, N 2 } of Boolean networks
such that Nn computes Fn, is of size n °~) and is of depth O((log n) k) for all
n in N. (See Borodin (1977) and Ruzzo (1981) for more details concerning
uniform sequences of networks.) An implementation F will be said to be in
NC if it is in NC k for some k in N. (See Pippenger (1979) and Ruzzo (1981)
for further results on these classes.) By a result of Borodin (1977), if a
function has an implementation in NC k for some k/> 1, then it is computable
in space log k.

For a natural number k and a function R: N ~ N satisfying R(n) ~ n, an
implementation F will be said to be in NCk(R) if there is a (log R)-space
uniform sequence N--- {N1, N 2,... } of networks such that N, computes F , , is
of size R(n) °~1) and is of depth O((logR(n)) k) for all n) 1 in N. An
implementation F will be said to be in NC(R) if it is in NCk(R) for some k
in N. (The classes NCk(R) are defined as NC k and NC, with n replaced by
R(n) in all resource bounds.) If a function has an implementation in NCk(2 s)

PARALLEL COMPUTATION FOR RINGS I 17

for some k~> 1 and some function S satisfying S(n)>~log2n, then it is
computable in space S k.

By addition in d we shall mean the map f : ~ × J ~ J for which
f (x , y) = x +y , by negation in d we shall mean the map f : d ~ d for
which f (x) = - x and by multiplication in d we shall mean the map
f: J × d ~ J for which f (x , y) = xy. An implementation for addition or
negation will be called efficient if it is in N C ° and an implementation for
multiplication will be called efficient if it is in N C 1. We shall say that a ring
(d , a) is well endowed if there is a succinct uniform representation with
respect to which it has efficient implementations for addition, negation, and
multiplication.

Returning to the ring of integers, recall ~(x)= rlogp(ix] + 1)} (the number
of p-ary digits needed to represent x). For p >~ 2 standard p-ary notation is
(essentially) a succinct represenation for (Z, if), but it does not yield an
implementation for addition in N C °. For p ~> 3 we shall now construct a
succinct representation (l, r) for (Z, ~) with respect to which there are
implementations for addition and negation in N C ° and an implementation
for multiplication in N C L

For n~>l in rN, define P n : { - (P - 1) , . . . , - 1 , 0 , 1 (p - 1) } " ~ Z by
pn(u 1 ... u,) = Y~l.<<k<, UkP k-1 for Ul,..., U, in {--(p -- 1),..., --1,
0, 1 , . . , (p - - 1)}. Clearly Z, is included in p , ({ - (p - 1) - 1 ,
0, 1 , . . . , (p - i) } ") for all n>/1 in ~. By encoding each symbol of
{ - (p - 1),..., - 1 , 0, 1,..., (p - 1)} as a string of flog2(2p - 1)] symbols from
{0, 1}, we can obtain from p = (pl P2,--.) a representation (l,r) with
l(n) = [log2(2 p - 1)] n. This representation is clearly succinct, and will be
called the balanced p-ary representation for (Z, ~). This representation is due
to Avizienis (1961).

To see that addition (with the bound function # (n) = n + 1) has an
implementation in N C °, suppose that we are given Ul,..., un and v~ vn in
{ - (p - 1) , . , - 1 , 0, 1 (p - 1)} and that we wish to compute w~,..., w,+~
in { - (p - 1),..., - (p - 1),..., - 1 , 0, 1,..., (p - 1)} such that

Pn+l(Wl "" Wn+l) = P n (U l - . . Un) ~- Dn(/-)l . . . Vn).

Since, for l< . k<~n ,]Uk]<~p--1, and]Vk]<. p - 1, we have]Uk+Vkl<~
2p- -2 , SO it is possible to write U k + V k = p x k + y k with Ixk]~< 1 and
]Yk] ~<P -- 2. (Here we use the fact that p ~> 3.) If, for 1 ~< k ~< n + 1, we set
W k = X k _ ~ + y k, where x 0 = 0 and y , + l = 0 , then]wk]~<p-1 and the
condition of the preceding paragraph is fulfilled. Since w k depends only on
u k, Uk_ ~ , V k, and Vk_ ~ , W can be computed from u and v in N C °.

To see that negation (with the bound function 0(n) = n) has an implemen-
tation in N C °, observe that each symbol in {--(p - 1) --1, 0, 1 (p -- 1)}
can be negated separately, since

pn((- -U l) " '" (--Un)) = - - p n (U 1 "'" U.).

1 18 BORODIN, COOK~ AND PIPPENGER

To see that multiplication (with the bound function ~i(n) = 2n + [log2(2n)])
has an implementation in N C l, suppose that we are given u~,...,u,, and
v I v n in {--(p - 1) - 1 , 0, 1 (p - 1)} and that we wish to compute
wl,..., wo(n) in { - (p - 1),..., - 1 , 0, 1,..., (p - 1)} such that

po(,)(w,..., w,(,)) = p , (u l ... u ,) p , (v I ... vn).

Since, for 1 ~i<<.n and 1 <~j<~n, lue[~p- 1 and Ivil~p- 1, we have
[uivjl <. (p _ 1)2 ~<p2 _ 1. Thus it is possible to write uiv j =px i , j + Y i j with
[xi,j[< p -- 1 and [Yi,g[~<P - 1. If we set

and

z i j = x i j _ i if i + l ~ j ~ n + i,

= O otherwise,

Zn+i,j = J i , j - i+ l

= 0

for l ~ < i < n a n d l~<j~<2n, then

if i + l ~ j < ~ n + i - 1 ,

otherwise,

Z Pzn(Zi, l "'" Z i ,2n)=Pn(Ul "'" Un)Pn(Vl "'" lJn)"
l<.i<~2n

Since zi,j depends only on u i and vj_i, and z,+i~ i depends only on u i and
vj_i+ l, z can be computed from x and y in NC °. If we compute w~,..., w,(n)
in { - (p - 1),..., - 1 , 0, 1,..., (p - i)} such that

pO(n)(Wl "" Worn)) =- ~ . PZn(2i,l . . . Zi,zn),
l~i<~2n

the condition of the preceding paragraph will be fulfilled. By iterated
addition (see Corollary 3.7), we can compute w from z in NC 1.

We have proved

PROPOSITION 2.1. The ring o f integers is well endowed, using balanced
p-ary representations for p >~ 3.

In computing integer functions, one might prefer standard p-ary represen-
tations to balanced p-ary representations. The former notion can be
formalized as:

For n/> 1 in IN, define an: { -1 , 0, 1} × {0 p - 1}"--, 2 by

Gn(U0Ul "'" Un) = U0 Z Ukpk--1
l~k<~n

P A R A L L E L C O M P U T A T I O N FOR RINGS 119

for u 0 in { - 1 , 0 , 1} and u~,...,u n in {0 p - 1}. Clearly 7/n is included in
en({-1 , 0, 1 } × {0,...,p - 1 }n) for all n >~ 1 in ~. By encoding each symbol
of { -1 , 0, 1} as a string of two symbols from {0, 1 }, and each symbol of
{0 p - 1 } as a string of [log2p] symbols from {0, 1}, we obtain from

= (or 1, e2,...) a representation (m, s) with m(n) = 2 + flog2p] n. This
representation is clearly succinct, and will be called the standard p-ary
representation for (Z, ~).

We shall prove

PROPOSITION 2:2. For p >/3, conversion f rom standard to balanced p-
ary representations has an implementation in N C °, and conversion f rom
balanced to standard p-ary representations has an implementation in N C 1.

It is easy to see that conversion from standard p-ary to balanced p-ary has
an implementation in N C °. Simply observe that the sign can be affixed to
each symbol in { 0 , . . . , p - 1} separately, since

Dn((~ /0Ul) "°" (U 0 U n)) = O'n(U0Ul . - . Un).

To see that conversion from balanced p-ary to standard p-ary has an
implementation in N C ~, suppose that we are given u 1,...,u n in
{ - (p - 1) , . . . , - 1 , 0, 1 (p - 1) } and that we wish to compute v 0 in
{-1 , 0, 1} and v I v, in / 0 , . . . , p - 1} such that

 n(VoV . . . v n) = P n (U , "" Un).

The sign v o is the sign of the most significant nonzero digit of uj ... u n
(zero if all the digits of u I ..- u , are zero). Let a 0 = 0 and for 1 ~< k~< n,
define a k i n { - 1 , 0 , 1 } b y a k - - - 1 i f u k < O, a k = l i f u k > O a n d a k = a k 1
otherwise. Then v 0 = a n. Thus v 0 can be computed as the final state of a
finite-state machine that makes a single pass over the string u.

The digits of v 1 v n are obtained from those of u I ... u n by converting
digits of the "wrong" sign to those of the "right" sign, which is done by
"borrowing" from more significant digits. Let b 0 = 0 and for 1 ~< k ~< n define
b k in { - 1 , 0 , 1 } and v k in { 0 , . . . , p - i } by b k = - - i if v 0 = - - I and
u k + b k - l > 0 , b k = l i f v 0 = 1 and u k + b k _ l < O , a n d b k = O o t h e r w i s e . Let
Vk= Vo(Uk+bk_l - -Pbk) . Then the condition of the preceding paragraph is
fulfilled, and the string vl ... v n can be computed by a finite-state machine
with initial state v 0 that makes a single pass over the string u.

Since functions computed by finite-state machines have implementations
in NC 1 (see Ofman, 1963 or Ladner and Fischer, 1980), conversion from
balanced p-ary to standard p-ary has an implementation in N C 1.

We have defined standard p-ary for p >~ 2 and balanced p-ary for p >/3.

120 BORODIN, COOK, AND PIPPENGER

For p = 2, balanced p-ary does not yield efficient implementations. It is easy,
however, to convert from standard 2-ary to standard 4-ary and back in N C °
(by combining successive pairs of 2-ary digits).

3. CONSTRUCTING NEW WELL-ENDOWED RINGS FROM OLD ONES

If the ring ~ has a length function a, then the direct product d k of k
copies of J " has a natural length function a k given by

ak(xl ,..., Xk) = max{a(xO,..., a(Xk) }.

We shall write (d , a) k for the ring j k with the length function u k.
More generally, if ~ is an algebra of dimension k over sO" with structure

coefficients t = {th,~,:}l<h<k, 1-<<i<k, l < j ~ in s~¢ SO that

[x + y] h = x h + y h ,

=

and

[xy]h = t h , i j x i y j ,
l <~ i ~ k , l <~j<~k

for all x = (x l , . . . , x k) a n d y = (y l , . . . , y k) in ~ , and l<~h<~k, and i r a is a
length function for ~¢', then fl, given by

fl(Xl ,..., Xk) = max{a(Xl) a(Xk) }

is a natural length function for ~ . We shall write (d , a)[~]/(A(]3)) for the
ring of polynomials in the indeterminate ~ with coefficients in sO" modulo the
polynomial A(~) (assuming the leading coefficient of A(~) is a unit in d) ,
and (H , a) kxk for the ring of k by k matrices with entries in d , when they
are endowed with length functions in this way.

Just as a length function a for J extends in a natural way to a length
function for any finite-dimensional algebra over J ' , a representation (l, r) for
(d , a) extends in a natural way to a representation for any finite-
dimensional algebra over (J , a) (by representing each component
separately) and implementations of addition, negation, and multiplication for
(~¢, a, l, r) extend in a natural way to implementations for any finite-
dimensional algebra over (d , a , l , r) (by computing each component
separately, using the formulae in the preceding paragraph). Furthermore,
succinct uniform representations extend to succinct uniform representations
and efficient implementations extend to efficient implementations. We
summarize these results as

P A R A L L E L C O M P U T A T I O N FOR RINGS 121

PROPOSITION 3.1. I f (J , a) is a well-endowed ring and (~ , f l) is a
finite-dimensional algebra over (H, a), then (~, f l) is a naturally well
endowed.

COROLLARY 3.2. I f (d , a) is well endowed, then (d , a) k is naturally
well endowed.

C O R O L L A R Y 3.3. I f (d , a) is well endowed, then (~¢', a)[~]l(A(~)) is
naturally well endowed.

COROLLARY 3.4. I f (~', a) is well endowed, then (d , a) k×k is naturally
well endowed.

We now turn our attention to infinite-dimensional algebras.
Let d be a ring. Let d ~ denote the weak direct product of a countably

infinite sequence of copies of d ; that is, the ring of countably infinite
sequences of elements of J in which all but finitely many components
vanish, with componentwise addition and multiplication. By the order ord(x)
of an element x = (xl , x2,...) in H ~ we shall mean the largest n such that x n
does not vanish. If d has a length function a, then d ~ has a natural length
function a °°, given by

a °° (x) = m a x { o r d (x) , max a(x.)}.
1 ~<n< z~o

We shall write (d , a) ~ for (d ~, a~) . If (d , a) has a representation (l, r),
then (d , a) ~ has a natural representation (I ~, r~) , given by l~(n)= nl(n)
and

r~ (ul ... Un) = (rn(Ul),... , rn(Un) , 0,...)

for all n in N and u 1,..., u n in {0, 1 }/{,). We shall write (l, r) ~ for (l ~, r~) . If
(l, r) is succinct and uniform, then so is (l, r) ~. Furthermore, if (J~¢, a) has,
with respect to (l, r), implementations for addition and negation in NC ° and
an implementation for multiplication in NC 1, then so does (d , a) ~ with
respect to (l, r) °°.

We summarize these results as

PROPOSITION 3.5. I f the ring J is well endowed, then the ring s,¢oo is
naturally well endowed.

We shall say that a map f : s~¢ × s,¢-~ s~¢ is associative i f f (x , f (y , z))=
f (f (x , y), z) for all x, y, z in d , and e is a neutral element f o r f if f (x, e) = x

122 BORODIN, COOK, AND PIPPENGER

for all x in d . Let ~ denote the strong direct product product of a
countably infinite sequence of copies of d ; that is, the ring of coun-
tably infinite sequences of elements of d with componentwise addition
and multiplication. Then f * : d °~ -~ s¢ ° (iterated f) is defined by

f * (x l , x2, x 3) = (x 1 , f (xl , X z) , f (f (x l , x2) , x3),...). The ring S is not, in
general, well endowed, because it does not inherit a length function from J
in a natural way. Nevertheless, we can speak of an implementation o f f * as
follows.

Let d have length function a and representation (l, r). Suppose f is
associative and has bound function ~, where ~(n)>/n for all n. Let
~*(n)=~fl°g2"l(n); that is, ~ composed with itself [log2n] times and
evaluated at n. Now suppose x C J ~ , 1 ~< k ~< n, and am(x) ~< n. Then the
element [f* (x)] k can be constructed by a balanced binary tree of
applications off , so that a ([f * (x)] k) <<. 0 FIog2k l(n) ~< O*(n)-

An implementation for f * is a sequence F * = {F* ,F* , . . . } of functions
such that F* : {0,1}"/(") ~ {0,1} "l(~*(")) and for all u in {0,1} "t~"l,
F*(u) = w l w 2 ... w , , where w k ~ {0, 1} t(o*("~) and ro.~,)(wk) = [f * (r ~ (u))] k ,

for 1 <<.k<<.n.

PROPOSITION 3.6. I f d is a well endowed ring, and f : • × ~ ~ ~ / is
an associative map with a neutral element and with an implementation in
NCk fo r some k in ~, then f * : s ¢ ~ ~ • has an implementation in NCk+L

The proof is a tree construction (the "parallel prefix algorithm") in the
same spirit as Ofman (1963) and Ladner and Fischer (1980). The only
additional complication here is the necessity of "padding" (increasing the
lengths of) the representations of certain elements computed in the
implementing networks so that they will be right for the outputs, and right
for inputs to the subnetworks implementing f. The padding of the represen-
tation of x is accomplished by computing f (x , e), where e is the neutral
element. The representations for e are log-space uniform since the represen-
tation (l, r) is uniform.

Since addition is associative, has neutral element 0, and has the bound
function 0(n) = n + O(1), we have

COROLLARY 3.7. In a well-endowed ring, iterated addition has an
implementation in N C 1 and a bound funct ion O*(n) = n + O(log n).

Since multiplication is associative, has neutral element 1, and has the
bound function O(n) = 2n + O(log n), we have

COROLLARY 3.8. In a well-endowed ring, iterated multiplication has an
implementation in N C 2 and a bound funct ion O*(n) = 2n 2 + O(n log n).

PARALLEL COMPUTATION FOR RINGS 123

Let d be a ring. Let s¢ ~[~] denote the ring of polynomials in the indeter-
minate ~ over ~¢, that is, the ring of formal power series

0 < k < ~

in which all but finitely many of the coefficients A k vanish. The degree
deg(A(~)) of such a polynomial is the largest k such that A k does not vanish.
If d has a length function a, then J [~] has a natural length function a '
given by

a'(A(~))=max{deg(A(~)), max a(Ak) }.
0~<k<~

We shall write (d , a)[~] for (d[~] , a'). If (d , a) has representation (l, r),
then (d , a) [~] has a natural representation (I',r'), given by I ' (n)=
(n + 1) l(n) and

[r'(Uo... u,)]k = r,(uk) if 0 ~< k~< n,

= 0 otherwise,

for all n/> 1 in N, u o u, in {0, 1 }/~n) and k in •. We shall write (l, r)[~]
for (l', r'). If (l, r) is succinct, then so is (l, r)[~]. Furthermore, if (d , a) has,
with respect to (l, r), implementations for addition and negation in NC ° and
an implementation for multiplication in NC 1, then so does (d , a)[~] with
respect to (l, r)[~]. (For multiplication, observe that the sum

O~j<k

can be computed in NC l by iterated addition.)
We summarize these results as

PROPOSITION 3.9. I f the ring ~ is well endowed, then the ring d [4] is
naturally well endowed.

We close this section with a result which will be useful in computing
stochastic closures (Section 5).

Let ~¢ be a commutative ring with unity. Let the map V: d [~] -~ d o0 be
defined by

[V(A (~))]k = (d kA (~)/d~ ~) I~ =1

for all A(~) in J [~] and k in N.

PROPOSITION 3.10. I f d is a well-endowed commutative ring with unity,

124 B O R O D I N , C O O K , A N D P I P P E N G E R

then the map V: d [~] ~ s~e "°~ has an implementation in N C 2 and a bound
function q)(n) = O(n log n).

The proof depends upon the obvious formula

[V(A(Q)]k= V. A t l ! / (l - k) ! ,
k ~ l ~ m

which holds for all k and m in N and all A(~) of degree at most m in J [~] .
The array

F k , l = 1 if k <~ l,

= 0 otherwise,

for k >/1 and l/> 1 can be computed (as elements of d) in N C °. The array

G k d = l - k if k ~ l ,

= 0 otherwise,

for k >/1 and l/> 0 can be computed from F in NC 1 by iterated addition on
the rows. The array

Hk, 1 = l!/(l - k)! if k ~ l,

= 0 otherwise,

for k / > 0 and l> /0 can be computed from G in N C 2 by iterated
multiplication on the columns. The sum in the formula can be computed
from A(~) and H in NC ~. The verification of the bound function is
straightforward and completes the proof of Proposition 3.10.

4. DETERMINANTS

Let ~" be a ring. Let s~ "°°x~ denote the ring of infinite matrices
{Aid}l<i<~, l<j<oo for which all but finitely many entries Aid vanish. The
order, ord(A), of such a matrix is the largest k such that at least one of the
entries AI,k,... ,Ak.~,... ,Ak, ~ does not vanish. If d has a length function a,
then j , oo×~ has a natural length function a ~ × ~ , given by

a°~ ×°°(A) = max{ord(A), max a(Aid)}.
1~<i< o~, l~<j< oo

We shall write (J , a) °°x°° for (d°°x°°,a°°X°°). If (J , a) has a represen-

PARALLEL COMPUTATION FOR RINGS 125

tation (l,r), then (d , a) ~x°° has a natural representation (l°°X°°,r~X~),
given by l°°X~(n)= nZl(n) and

[rO~×OO(u
\ I,l U l , . Un,1 U . , .)] id

=r,(ui,:) if l ~ i ~ < n and

= 0 otherwise,

1 <~j<~n,

for all n/> 1 in iN, all u~.~,...,un, n in {0, 1} t(n) and all i>/1 and j /> 1 in IN.
We shall write (l, r) *x°° for (l ~×°°, r°°X*). If (l, r) is succinct and uniform,
then so is (l ,r) °°x°°. Furthermore, if (J , a) has, with respect to (l, r),
implementations for addition and negation in NC ° and an implementation
for multiplication in NC 1, then so does (J , a) °°x~ with respect to
(l, r) °~x°~. (For multiplication, observe that the sum

[AB]i,k= ~ Ai,:Bi,k
1 ~<j< oo

can be computed in NC ~ by iterated addition--see Corollary 3.7.)
We summarize these results as

PROPOSITION 4.1. I f the ring d is well endowed, then the ring a/°°x°°
is naturally well endowed.

Let sO" be a commutative ring with unity. Let the map D: d°°x°°-~ d °°

be defined by

= ,.<:.<<0

for all A in d °°x~° and k>~ 1 in N, where A denotes the determinant.

PROPOSITION 4.2. I f d is a well-endowed commutative ring with unity,
then the map D: ad°°x°° --+ d °° has an implementation in NC 2 with a bound
function O(n) = n°m.

The proof depends on the existence of an appropriate log-space uniform
sequence {61, 62,.. } of arithmetic circuits such that ft, computes the deter-
minant of an n X n integer matrix, n = 1,2 Such circuits are described in
(Borodin et al., 1982), but a simpler and more direct construction is given by
Berkowitz in (1982). (Csanky's method (1976) is not general enough for our
purposes since it requires division by integer constants.)

To describe the method in (Berkowitz, 1982), let B be an arbitrary n X n
matrix over d . For 1 ~ t ~< n -- 1 let M t be the t X t lower right submatrix of

126 BORODIN, COOK, AND PIPPENGER

B, let R t be the 1 × t row submatrix immediately above Mr, and let S t be the
t × 1 column submatrix immediately to the left of M t. That is,

[Mt]i j=B,- t+i , , t+i, l < ~ i , j < t

[Rt]l , j=Bn-t,n t+j, 1 <~ j~ t

[St]i, , = B . t+i,,-t , l<~i<~t.

For 0 ~< t ~ n - 1 let Ct be the (t + 2) × (t + 1) matrix over d defined as
follows:

[Ct]ij = --R tMi-J- 2St,

= B n _ t , n _ t ,

= O,

In particular, C O

1 <~j<~i--2,

j = i - - 1 ,

j = i ,

i + l < ~ j ~ t + l.

= [B1]. Then for 1 ~t<~n, the matrix product 1-I~-1Ct-k
is a (t + 1)X 1 column matrix comprising the coefficients of the charac-
teristic polynomial A(M t --,~I) of Mr, where we define Mn = B. Therefore,

= [c , , c , 2 . . . Co l , , , .

The above formula for the determinant can be implemented using iterated
matrix multiplication (Corollary3.8) and padding (see the proof of
Proposition 3.6). This completes the proof of Proposition 4.2.

In Section 6 we shall need the fact that determinants of matrices whose
entries are rational functions can be computed in NC 2. This does not follow
immediately from Proposition 4.2, because the field of rational functions
does not seem to be a well-endowed ring. However, that proposition can be
generalized to apply to the field of fractions of any well-endowed integral
domain.

Let (d , a, l, r) be a well-endowed integral domain. Let J ' be the field of
fractions of J . Then d ' inherits a natural representation (l', r ') from (l, r),
where l ' (n)= 2/(n) and

r,(uv) = r,(u)/r,(v) if r,(v) 4= O,

= undefined if r,(v) = O,

for all u, v C {0, 1} ""~. Notice that (l', r ') is not strictly a representation in
the sense of Section 2, because ~¢' does not inherit a length function a ' from
a satisfying conditions (1) and (2) in any obvious way. Nevertheless (l', r ')
is appropriate for implementing the determinant function D.

PARALLEL COMPUTATION FOR RINGS 127

COROLLARY 4.3. Let d be a well-endowed integral domain and let d '
be its field of fractions. Then the map D: (d ') ~ × ~ (d ') °~ has an
implementation in NC 2.

To prove the corollary, note that the input to the nth network
implementing D represents an n X n matrix A with each element A u
presented as a fraction xo/yij, with xij,ytj in d . (We assume yij :~ 0.) The
network computes the matrix B, where Bi j=xi j~[k~jy ik by iterated
multiplication, in N C 2. Then A(B) is computed in NC z by Proposition 4.2,
and the output is A (A) = A (B) / Y , where Y = I~ijYij is computed by iterated
multiplication.

COROLLARY 4.4. The determinant of an n × n matrbc of rational
functions can be computed in NC 2, where the entries are presented as pairs
of polynomials of (formal) degree n in some constant number of variables
with n-digit integer coefficients.

5. COMPLETION OF A STOCHASTIC MATRIX

Let A be n X n Boolean matrix. By the transitive closure of A we shall
mean the n X n matrix A '~ given by the formula

A* = ~ A t,
X..-..

0~<t<~

where A t denotes the tth Boolean power ofA (A ° denotes the n X n Boolean
identity matrix) and addition and multiplication of Boolean values are inter-
preted as disjuction and conjuction, respectively. A simple argument shows
that A* is given by the finite sum

and thus by the formula

A* = ~ A t,
o < t < n

A* = (I + A) n-1.

Since the Boolean product of two n × n matrices can be computed in
Boolean parallel time O(log n), it follows that A* can be computed from A
in Boolean parallel time O((log n)2).

This well-known result can be used to prove the result, due to Savitch
(1970), that a nondeterministic machine accepting a language in space S can
be simulated by a deterministic machine recognizing the same language in
space S 2. We shall establish an analogue of Savitch's theorem for

643/58/1 3 9

128 BORODIN, COOK, AND PIPPENGER

probabilistic rather than nondeterministic machines. This leads at once to the
following problem.

Let A be an n × n stochastic matrix (an n × n matrix of nonnegative real
numbers in which the entries in each row sum to 1). By the completion of A
we shall mean the n X n matrix A* given by the formula

e l * = ~_~ A t.
0 < t < ~

Some remarks about the interpretation of this formula are in order. If A is
stochastic, then so is A t for any t in N. Thus, in each term of the sum, the
sum of all matrix entries is n, and in the ring of n × n matrices of real
numbers with its usual topology, the sum defining A* always diverges. To
make sense of this formula, we shall interpret it in the following alternative
way. For each 1 ~< r ~< n and 1 ~< s ~< n, the partial sum

}_L [A%s
o<t<u

is nonnegative and nondecreasing in u. If it is unbounded, it diverges to ~ ,
and we shall take [A*]r,s to be ~ . If it is bounded, it converges to a
nonnegative real number x, and we shall take [A*]r,s to be x. Thus, the
entries of A* are nonnegative extended real numbers.

It happens that if the entries of A are rational, then so are the finite entries
of A* (this will in fact be proved below). Simon (1981a) showed that if the
entries of A are drawn from {0, 1 A* ~, 1 }, then can be computed in Boolean
space O((log n)6). He used this result to show that a probabilistic machine
accepting a language in space S can be simulated by a deterministic machine
recognizing the same language in space S 6. Gill, Hunt, and Simon (1980)
used this result in turn to show that a probabilistic machine computing a
function in space S can be simulated by a deterministic machine computing
the same function in space S 36, and Hunt (1978) subsequently improved this
result from S 36 to S 6.

In this section, we shall show that if the entries of an n X n stochastic
matrix A are rational, then A* can be computed in NC 2 (and thus in
Boolean space O((log n)2)). We shall use this result in the next section to
improve the simulations of probabilistic machines by deterministic machines
just cited from S 6 to S z. This improvement constitutes a generalization of
Savitch's theorem, since the languages accepted by probabilistic machines in
space S include those accepted by nondeterministic machines in space S.

We shall prove

PROPOSITION 5.1. I f A is an n × n rational stochastic matrix, whose
entries are given as pairs of integers (numerator, denominator) having

P A R A L L E L C O M P U T A T I O N F O R R I N G S 129

standard radix representations, then its completion closure A* can be
computed in the same form in NC 2.

Let A be an n X n rational stochastic matrix. We wish to compute the
(r, s)th entry of its completion:

• A t [A'Jr ,s= lim ~ []r,s.
u--}oo O<~t<~u

Now consider the ring @[[~]] of formal power series in indeterminate ~ with
rational coefficients. Since A is stochastic, the series ~.0<t<oo [At]r,s~ t
converges for each real ~ in the interval 0 ~ < 1. Further, the sum
)~o<t<.u[At]r,,~ t is monotone increasing in both u and 4, so that
lim~Tl~o<t<oo [At]r,s ~t_= limu_, ~ Y]o<t-<~ [At]r,s, where limit I indicates
that ~ is restricted to values less than 1. Therefore,

• [A t l ~ t [A*]r , ,=~i~ E t Jr,, •
0 ~ t < o o

Let @"×"[[~]] denote the ring of formal power series in indeterminate
with n × n rational matrices as coefficients. The formal power series I - A ~
has a two-sided inverse in this ring, namely

(I - A ~) I = V' At~ t,
O~<t<co

as can be verified directly by multiplication. Now observe that @nxn[[~]] is
isomorphic to @[[~]]nx,, the ring of matrices with formal power series as
elements, by the obvious bijection. Hence we may write

[(I - A ¢)]r,s W ' ' = .,..., [A]r,s~"
0~<t<oo

Therefore

- A ,)]r.,. [A.]r,s = lim [(/ -1

For the purpose of evaluating the right-hand side of this equation, (I - A~)-1
may be regarded as an element of O(~) "x", since the subring of @(~)
consisting of those rational functions with no pole at ~ = 0 is naturally a
subring of @[[4]]. Hence by Corollary 4.4 and Cramer's rule, the function of
A with value [(I -A~) - l] r , s , which can be expressed and computed as a
quotient of integer polynomials P(~)/Q(~), is in NC 2.

It remains to consider the limiting process in the formula

130 BORODIN, COOK, AND PIPPENGER

The question, of course, is whether or not the rational function represented
by P(~)/Q(~) has a pole at ~ = 1: if so, then [A*]~,s = m. If not, then it
assumes a finite value x and [A *]r.s = x. It does not suffice to inquire as to
whether or not not Q(1) = 0, for P(~) and Q(~) might possess some number
of common zeros at ~ = 1 without the rational function represented by
P(~)/Q(~) having a pole at ~ = 1. One solution to this problem is to eliminate
common factors of (1 - ~) from P(~) and Q(~) by division, using Newton's
method to perform division in NC z (see, e.g., Borodin and Munro (1975,
Theorem 4.4.1)). It is possible to avoid division, however, in the following
way.

Let p denote the smallest natural number m such that [V(P(~))]m=
(dmp(~)/d~ m) [g=l does not vanish, and let q denote the smallest natural
number m such that [V(Q(~))]m= (d'nQ(~)/d~ m) Ig=l does not vanish. By
l'H6pital's rule, if p < q, then

lira P(~) /Q(~) = oo,
gYl

and if p/> q, then

~i~ P(~)/Q(~) = [v(P(~))]q/[V(Q(~))]q.

These computations can be performed in NC z by Proposition 3.10. This
completes the proof of Proposition 5.1.

6. SPACE-BOUNDED PROBABILISTIC MACHINES

In this section we shall prove that a probabilistic machine running in
space S can be simulated by a deterministic machine running in space S 2.
First, however, we shall need a lemma concerning the computation of
probabilities.

An n X n stochastic matrix A can be regarded as a Markov process with
states {1,..., n}, with A,.,s being the probability of transition from state r to
state s in one step. By elementary arguments, [At]r,s is the probability of
transition from state r to state s in t steps, and [A*]r,s is the expected
number of steps that A spends in state s when started in state r. If state s
cannot return to itself in one or more steps, then [.4']~,~ is the probability
that A ever enters state s when started in state r.

Let {i}, J and K be mutually disjoint subsets of {1,.,., n}. We shall denote
by P(A: i ~ J; K) the probability that the process A, started in state i, enters
a state in J without previously entering a state in K. We shall abbreviate
P(A: i ~ J; (~) by P(A: i ~ J).

PARALLEL COMPUTATION FOR RINGS 131

We shall assume that a subset H of {1,..., n} is represented by its charac-
teristic vector

~ r l ~ h ~ n .

x H (h) = l if h e n ,

= 0 otherwise,

LEMMA 6.1. Let A be an n × n stochastic matrix whose entries are
drawn from {0, 1 ~, 1 }, and let /i}, J, and K be mutually disjoint subsets of
I 1,..., n }. The probability P(A : i ~ J; K) can be computed from A, i, J, and K
in NC 2.

Define the (n + 2) × (n + 2) stochastic matrix B with entries drawn from
{0,½, 1 t as follows. For 1 ~ r < ~ n and 1 <~s<~n, let Br , s=Ar , s i f s is not in
J o r K a n d B r , s - - - = 0 i f s i s i n J o r K . For l~<r~<n, let

and

Br,n+ 1 ~ ~ Ar,s
sEJ

Br,n+ 2 ~ ~ At,s"
sEK

For n + l E r ~ < n + 2 , 1 e t B r , s = 0 f o r l ~ < s ~ < n + l and letBr,n+ 2 = l . T h e
process B mimics A until A enters a state of J or K. When A enters a state of
J, B enters the state n + 1, remains there for one step, then enters the
absorbing state n + 2. When A enters a state of K, B enters the absorbing
state n + 2. The probability P(A: i ~ J ;K) is the probability that B ever
enters state n + 1 when started in state i. Since state n + 1 cannot return to
itself in one or more steps, this equals the expected number of steps that B
spends in state n + 1 when started in state i, which is [B*]i,n+l. The matrix
B can be computed from A in NC 1, and by Proposition 5.1, [B*]i,n+l can be
computed from B in NC 2. This completes the proof of Lemma 6.1.

We shall define a probabilistic machine to be a machine funished with two
alternative deterministic transition functions. At each step, the machine
moves in accordance with one or the other of its transition functions,
depending upon the outcome of an independent unbiased coin flip.

We shall assume that a machine has a finite control, an input tape bearing
an input string X of length k which is accessed through a two-way read-only
input head and a work tape of length S(k) (where S is a constructable
function satisfying S(k)>/ log z k) which is accessed through a two-way
read/write work head.

Let us consider the acceptance of languages. For this we shall assume that
the finite control has certain designated accepting states. We shall say that a

132 BORODIN, COOK, AND PIPPENGER

probabilistic machine accepts that language comprising the input strings for
which the probability that the machine ever enters an accepting state strictly
exceeds 7.1 (This definition assigns a language to each probabilistic machine.)

This is not the only possible definition of a probabilistic machine
accepting a language, but it seems to be the broadest, and for our purposes,
the broader the definition of acceptance the stronger our results. In any case,
it possesses the following two attractive properties: (1) if a language can be
accepted by a nondeterministic machine in space S, then it can be accepted
by a probabilistic machine in space S (this is trivial); and (2) if a language
can be accepted by a probabilistic machine in space S, then so can its
complement (see Simon, 1981b).

Let M be a probabilistic machine that accepts a language L in space S. By
a configuration of M for input X of length k we shall mean a natural number
in t 1 k}, representing the position of the input head, a symbol of the input
alphabet, representing the symbol scanned by the input head, a natural
number in { 1,..., S(k)}, representing the position of the work head, a string of
length S(k) of symbols of the work alphabet, representing the condition of
the work tape, and, finally, a symbol representing the state of the finite
control. For a given input string X of length k, there are at most
V(k) = 2 °(s~k)) configurations of M for X, and these configurations can be
encoded as elements of {1,..., V(k)} in a natural way. Furthermore, the
V(k) X V(k) one-step transition matrix A is a stochastic matrix with entries
drawn from {0, ½, 1 } which can be computed from X in NC°(V) = NC°(2s).
The initial configuration i and the set of accepting configurations J (the set
of configurations containing an accepting state) can also be computed from
X in N C ° (V) = NC°(2s).

We can now construct a deterministic machine M' that recognizes the
language L in space S 2. The machine M' simply computes P(A: i -4J) ,
accepts if it strictly exceeds 1, and rejects otherwise. By Lemma 6.1 and the
observations of the preceding paragraph, the computation of M' can be
performed in NC2(V) = NC2(2 s) and thus in space S 2.

We have proved

PROPOSITION 6.2. I f a language can be accepted by a probabilistic
machine in space S, it can be recognized in NC2(2s).

COROLLARY 6.3. I f a language can be accepted by a probabilistic
machine in logarithmic space, it can be recognized in NC 2.

Now let us consider the computation of functions. For this we shall
assume that the machine has an output tape accessed through a one-way
write-only output head. We shall say that a probabilistic machine M
computes that partial function whose domain comprises those input strings X

PARALLEL COMPUTATION FOR RINGS 13 3

for which there exists an output string Y such that with probability strictly
exceeding ½, M halts after writing Y as output, and whose value for the
string X in its domain is the string Y. (For each input X there can be at most
one output Y satisfying this definition, so the definition assigns a partial
function to each probabilistic machine.)

Let M be a probabilistic machine computing a partial function f By a
theorem of Gill (1977), if for some input string X of length k the machine M
halts after writing a string Y of length l as output with probability strictly
exceeding I , then l <<, V(k). By an output situation for an input X of length k,
we shall mean (1) the element 0, representing the fact that M has not yet
written an output symbol, (2) a pair (m, a), where m is a natural number in
{ 1 V(k) } and a is an element of the output alphabet, representing the fact
that M has written m output symbols, the last of which was ~, or (3) the
element ~o, representing the fact that M has written more than V(k) output
symbols. By a superconfiguration for an input string X we shall mean a
configuration for X together with an output situation for X. For a given input
X of length k, there are at most W(k)= O(V(k)2)= 2 °~s(k)) supercon-
figurations for X, and these superconfigurations can be encoded as elements
of {1,..., W(k)} in a natural way. Furthermore, the W(k)× W(k) one-step
transition matrix A is a stochastic matrix with entries drawn from {0, 1 3,1}
which can be computed from X in NC°(W) = NC°(2s).

We shall now construct a deterministic machine that computes the partial
function f in space S 2. We shall do this in two steps. First we shall construct
a deterministic machine M" that computes a total function g that is an
extension of f in space S 2. (This construction could be reduced to
Proposition6.2 rather than the more basic Lemma6.1.) Then we shall
construct a deterministic machine M'" that recognizes the domain o f f in
space S 2. Combining these two constructions completes the proof.

We shall say that an output situation (m, o) is appropriate for an input X
if M enters a superconfiguration having output situation (rn, o) with
probability strictly exceeding I . Let i be the initial superconfiguration and let
J be the set of superconfigurations having output situation (m, a). Then
(m,o) is appropriate if and only if P(A: i~J)> 1. Thus, by Lemma 6.1,
whether or not a given output situation is appropriate for X can be computed
from X in NCZ(W) =NC2(2 s) and thus in space S 2.

The machine M" with input of length k behaves as follows. For each
natural number m from 1 to V(k) in turn, it determines whether or not there
exists an output symbol a such that (m, a) is appropriate for X. If not, M"
halts. If so, then this cr is unique (since at most one symbol can be written as
the mth output with probability strictly exceeding 1); M" writes tr as the mth
output and proceeds to the next value of m.

The machine M" computes a total function g that is an extension off , for
if M halts after writing a string Y of length l as output with probability

134 BORODIN, COOK~ AND PIPPENGER

strictly exceeding 5, then for each 1 <~m<~l, if a is the mth symbol of Y,
then certainly M enters a superconfigurtion having output situation (m, a)
with probability strictly exceeding 1 ~. Furthermore, by the observations of the
preceding paragraphs, the computation of M" can be performed in
NC2(W) = NC2(2 s) and thus in space S 2, which completes the first part of
the proof.

The machine M " with input X of length k behaves as follows. First, it
computes the length l and the last symbol p of g(X). This can be done in
NC2(W)=NC2(2 s) and thus in space S 2. Let i be the initial supercon-
figuration, let J be the set of halting superconfigurations having output
situation (l, p) and let K be the set of supereonfigurations having an output
situation (m, a) that is not appropriate for X. These can also be computed
from X in NC2(W)= NC2(2 s) and thus in space S 2. If P(A:i ~ J; K) > ½
then M ' " accepts, otherwise it rejects.

The probability P(A : i ~ J; K) is the probability that M halts after writing
g(X) as output. Thus, since g is an extension off , M ' " recognizes the domain
of f . Furthermore, by Lemma 6.1, M ' " can perform its computation in
NC2(W) =NC2(2 s) and thus in space S 2.

We have shown

PROPOSmON 6.4. I f a partial function can be computed by a
probabilistie machine in space S, it can be computed in NCZ(2S).

COROLLARY 6.5. I f a partial function can be computed by a probabilistic
machine in logarithmic space, it can be computed in NC 2.

7. CONCLUSION AND SOME OPEN PROBLEMS

Propositions 6.2 and 6.4, the simulation of an S space bounded
probabilistic Turing machine by an S 2 space bounded deterministic machine,
provided the original motivation for this paper. It seems that the "technical
machinery" needed to establish this result is more than one might anticipate
given that so much of the general approach was already established. On the
other hand, results such as Corollary 4.3 and Proposition 5.1 (concerning the
Boolean parallel complexity of the determinant and stochastic completion
problems) should be of independent interest. Moreover, since Boolean
circuits are so basic to complexity theory, we feel that the formal concept of
well-endowed rings (with some of the specific examples developed here) will
prove useful in other applications.

One obvious question which we have not pursued is whether or not one
could prove that certain rings are not well endowed. Of course, it would be a
breakthrough for complexity theory if one could show that a specific

PARALLEL COMPUTATION FOR RINGS 135

function is not in NC 1 (even fixing the representation), but perhaps the
simultaneous requirements on implementations for addition and negation
(NC °) and multiplication (NC 1) are sufficiently strong to induce a negative
result (even over all succinct and uniform representations).

That the requirement on multiplication is not as severe as that of addition
and negation is justified by the applications. However, it is interesting to
consider the consequence of also insisting that multiplication have an
implementation in NC °. Would there be any interesting rings satisfying such
a strong condition? For the ring of integers, with a standard pary digit length
function, we can obviously have a representation for which multiplication is
implementable in NC °, but at a terrible cost with respect to addition.
Namely, represent an integer in terms of its prime factorization and then
multiplication is reduced to the addition of exponents. Assuming a succinct
and uniform representation (like the one just mentioned) for which
multiplication can be implemented in N C °, what is the best implementation
for the addition of integers? In particular, can we prove that addition and
multiplication cannot both be implemented in NC°?

Sections 4 and 5 establish that the determinant and stochastic completion
problems are in the Boolean class NC 2. As indicated before, any
improvement in the Boolean depth required for either of these problems
would imply a corresponding improvement for Savitch's (1970) well-known
simulation. A number of perhaps more tractable problems are also worth
pursuing. Our proof of Proposition 5.1 actually shows that the stochastic
completion problem is NC 1 reducible to the determinant problems (the
function V of Proposition 3.10 is clearly NC 1 reducible to integer deter-
minants). What about the converse reduction? Section 6 shows that the
stochastic completion problem is NC 1 hard for probabilistic log-space. Is the
problem computable within this class, thus making it a complete problem for
the class? Is it possible that the determinant problem is NC 1 hard (and hence
complete) for NC2?

Our model of a probabilistic machine is equivalent to one in which an
infinite sequence of outcomes of independent unbiased coin flips is written on
an orcle tape which is accessed by the machine through a one-way read-only
oracle head. Is it possible to extend our simulation results to the case of a
two-way read-only oracle head? What about the case of a two-way write-
only output head?

RECEIVED APRIL 19, 1983; ACCEPTED November 29, 1983

REFERENCES

AVlZIENIS, A (1961), Signed-digit number representations for fast parallel arithmetic, Inst.
Radio Engr. Trans. Electron. Comput. 10 389-400.

136 BORODIN~ COOK, AND PIPPENGER

BERKOWITZ, S. J. (1982), On computing the determinant in small parallel time using a small
number of processors, preprint.

BORODIN, A. (1977), On relating time and space to size and depth, SlAM J. Comput. 6
733-744.

BORODIN, A., VON ZUR GATHEN, J., AND HOPCROFT, J. (1982), Fast parallel matrix and GCD
computations, IEEE Sympos. Found. Comput. Sci. 23, 65-71.

BORODIN, A., AND MUNRO, L (1975), "The Computational Complexity of Algebraic and
Numeric Problems," Amer. Elsevier, New York.

COOK, S. A. (1981), Towards a complexity theory of synchronous parallel computation,
L'Enseignement mathdmatique XXVII, 99-124.

CSANKV, L. (1976), Fast parallel matrix inversion algorithms, SIAM J. Comput. 5, 618-623.
GILL, J. (1977), Computational complexity of probabilistic Turing machines, SIAM J.

Comput. 6, 675-695.
GILL, J., HUNT, J., AND SIMON, J. (1980), Deterministic simulation of tape-bounded

probabilistic Turing machine transducers, Theoret. Comput. Sci. 12 333-338.
HOPCROET, J. E., AND ULLMAN, J. D. (1969), "Formal Languages and Their relation to

Automata," Addison-Wesley, Reading, Mass.
HUNT, J. W. (1978), "Topics in Probabilistic Complexity," Ph.D. dissertation, Department of

Electrical Engineering, Stanford University, 1978.
JUNG, H. (1981), Relationships between probabilistic and deterministic tape complexity, in

"10th Sympos. on Mathematical Foundations of Computer Science, 1981," Lecture Notes
in Computer Science No. 118, pp. 339-346, Springer-Verlag, Berlin/New York.

LADNER, R. E., ANO FISCHER, M. J. (1980), Parallel prefix computation, J. Assoc. Comput.
Mach. 27 831-838.

OFMAN, YU. P. (1963), On the algorithmic complexity of discrete functions, Soviet. Phys.
Dokl. 7, 589-591.

PIPPENGER, N. (1979), On simultaneous resource bounds, IEEE Sympos. Found. Comput.
Sci. 20 307-311.

Ruzzo, W. L. (1981), On uniform circuit complexity, J. Comput. System Sci. 22, 365-383.
SAVA6E, J. E. (1976), "The Complexity of Computing," Wiley, New York.
SAVITCH, W. J. (1970), Relationships between nondeterministic and deterministic tape

complexities, J. Comput. System Sci. 4, 177-192.
SIMON, J. (1981a), On tape-bounded probabilistic Turing machine acceptors, Theoret.

Comput. Sci. 16, 75-91.
SIMON, J. (198 lb), Space bounded probabilistic Turing machine complexity classes are closed

under complement, ACM Sympos. Theory of Comput. 13, 158-167.
SIMON, J., GILL, J., AND HUNT, J. (1978), On tape-bounded probabilistic Turing machine

transducers (extended abstract), IEEE Sympos. Found. Comput. Sei. 19 107-112.
WINOGRAD, S. (1965), On the time required to perform addition, J. Assoc. Comput. Maeh. 12,

277-285.
WINOGRAD, S. (1967), On the time required to perform multiplication, J. Assoc. Comput.

Mach. 14, 793-802.

