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It is shown that a probabilistic Turing acceptor or transducer running within 
space bound S can be simulated by a time S 2 parallel machine and therefore by a 
space S 2 deterministic machine. (Previous simulations ran in space $6.) In order to 
achieve these simulations, known algorithms are extended for the computation of 
determinants in small arithmetic parallel time to computations having small 
Boolean parallel time, and this development is applied to computing the completion 
of stochastic matrices. The method introduces a generalization of the ring of 
integers, called well-endowed rings. Such rings possess a very efficient parallel 
implementation of the basic (+, - ,  ×) ring operations. 

1. INTRODUCTION 

Gill  (1977) introduced the concept  of language acceptance by space- 

bounded probabi l is t ic  Turing machines,  and showed that  such machines with 
space bound S could be s imulated by determinist ic  machines with space 
bound exp O(S). Simon (198 l a) improved this result  to achieve a s imulat ion 
within determinist ic  space bound S 6. In this paper,  we shall again improve 
this result so as to achieve a s imulat ion within determinist ic  space bound S 2. 
Our result can then be viewed as a general izat ion of  Savitch 's  (1970) 
s imulat ion of  space-bounded nondeterminis t ic  machines,  since nondeter-  
ministic computa t ions  can be viewed as a special  case of  Gi l l ' s  probabi l is t ic  
computat ions.  It is, o f  course,  a long standing open problem as to whether or 
not Savitch 's  result can be improved.  

Our determinist ic  space bound S 2 also applies to the simulat ion of  
probabi l is t ic  Turing t ransducers  bounded by space S. The previous best 
determinist ic  s imulat ion bounds for such t ransducers  were first space S 36, 
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due to Gill, Hunt, and Simon (1980), later improved to space S 6 by Hunt 
(1978). 

We choose to carry out our development within the context of parallel 
computation (by uniform families of Boolean circuits), the relation between 
parallel computation and space-bounded computation having already been 
established (see, e.g., Borodin (1977) for parallel computation by Boolean 
circuits). We only need to note that a function computable in depth S can be 
computed in deterministic space S, but apparently not conversely. Pippenger 
(1979) introduced the class N C  k, as those functions computable by Boolean 
circuits whose depth and size are (simultaneously) bounded by O((log n) k) 
and n °~1), respectively, where n is the number of inputs. 

It turns out that the class N C  = Uk>~oNC k is a very stable class, quite 
independent of the choice of any "reasonable" parallel model of computation 
(see, e.g., Cook, 1981). The classes ArC 1 and N C  2 are of particular interest, 
even though the definition of these classes does depend on the choice of 
model; i.e., Boolean circuits. 

In terms of circuits, the complexity of the basic ring operations of +, - ,  × 
for the integers has been well studied (see Savage, 1976); in particular it is 
known that these operations can all be realized within N C  1. If one insists on 
a nonredundant representation for the integers, then Winograd (1965; 1967) 
shows that a constant-depth implementation for addition is impossible. 
However, if one allows a redundant representation, then a constant depth 
implementation for addition is known (Avizienis, 1961). 

In order to achieve our simulation of probabilistic machines, we need to 
utilize a representation which makes possible N C  ° and N C  ~ representations 
for + and × (respectively) and apply this to the problem of computing the 
determinant. Simply stated, there are known arithmetic circuits (see 
Berkowitz, 1982) for the determinant which have O((logn) 2) depth of 
additions but only O(log n) depth of multiplications, and the determinant is 
central to all the known simulations of space bounded probabilistic 
machines. It turns out that there are sufficiently many details to warrant a 
careful and somewhat abstract development. 

We are thus led in Sections 2 and 3 to introduce the concept of a well- 
endowed ring. Such rings have representations in which addition and 
multiplication can be very efficiently implemented; that is, in N C  ° and NC 1, 
respectively. The development is used to extend known implementations to 
polynomial and matrix rings. We then apply these results in section 4 to the 
Boolean complexity of computing the determinant to obtain an N C  2 
implementation. We use this in Section 5 when we establish an N C  2 
implementation for the problem of computing the completion of a stochastic 
matrix. Finally, Section 6 applies the previous results to establish the desired 
simulation of probabilistic space-bounded machines. 

The reader, not interested in the development o f  well-endowed rings, who 
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is willing to accept Corollary 4.4 (stating that determinants over rational 
functions are in NCZ), can skip direetly to Section 5. 

Motivated by a seminar talk by Simon, our depth O(S 2) simulation of an 
O(S) space-bounded probabilistic acceptor was originally obtained in the 
spring of 1978, and referred to in (Simon et al., 1978). In 1981, Jung (1981) 
independently obtained an O(S 2) deterministic space bounded simulation in 
which matrix powers were computed using modular techniques instead of 
redundant notation. 

2. WELL-ENDOWED RINGS 

Briefly, a well-endowed ring is one in which elements can be represented 
by bit strings in such a way that addition can be computed in constant depth 
and multiplication can be computed in depth O(log n). The representation 
can be redundant, but it must be succinct in the sense that "small" ring 
elements have short representative bit strings. Thus ring elements must have 
a notion of size, or length. 

Formally, let d be a ring (not necessarily commutative, and not 
necessarily with unity). Let J be the monoid (semigroup) of natural 
numbers under addition. A length funetion for d is a function a: ~ ~ 
satisfying 

(1) a(x +y) ~ max{a(x),a(y)} + O(1) 

(2) a(xy) ~ a(x) + a(y) + O(log max{a(x), a(y)}) 

for all x iand y in d .  For brevity, we shall say "the ring ( d ,  a)" to mean 
"the ring ~¢~ with length function a." 

Let ~ be the ring of integers. Let p >/ 2 be a natural number. It is easy to 
verify that ~(x)= [logp([x I + 1)] (the number of p-ary digits needed to 
represent x) is a length function for 7/. In fact, ~ satisfies a stronger 
inequality than (2), namely ~(xy)<~(x)+~(y). However, the weaker 
inequality is needed for polynomial rings and other examples. 

From (1) and (2) it follows that 

(3) a(Y~l<~i~nxi) <~ maxl~i~<n a(xi) + O(log n) 

(4) a(]71<<.i<.,xi) ~ Zl<~i<~n a(Xi) @ O(n(log n + log maxl<i< . a(xi))). 

These formulas are proved by induction, using balanced binary trees to 
compute the sum and product. 

Let f :  d - ~ . ~  be a map from the ring ( d , a )  to the ring (~,f l) .  A bound 
function f o r f i s  a function ¢i: N ~ Ll such that 

fl(f(x)) <~ O(a(x)) 
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for all x in ~¢'. More generally, if k is a natural number and f :  d k -~ 5? then 
O should satisfy 

f l ( f (x l  ..... x~)) ~< ¢(maxIa(xO,... , a(Xk)}) 

for all x I ..... x k in d .  For brevity, we shall say "the map (f, ~)" to mean 
"the map f with bound function O." 

For a ring (~¢, a) and a natural number n, we shall let ~¢~, denote the set 
of elements x in J such that a(X) <~ n. 

A representation for a ring ( d ,  a) is a pair (l, r) comprising a function 
I : N ~ N  and a sequence r = { r l , r 2  .... } of functions such that 
r , :  {0, 1 } 1 ( " ) ~ d  and ~ is included in r~({0, 1} l(")) for all n in N. A 
representation (/, r) will be called succinct if I ( n ) = n  °~1) (i.e., if l(n) is 
bounded above by a polynomial in n), and uniform if for all x E d there is a 
log-space uniform sequence {u~, u z .... } such that u k is in {0, 1} t(~(x)+k) and 
r~(x)+k(Uk)=X for all k/> 1. (Here log-space uniform means that some 
Turing machine can, for all k, generate u k on a write-only output tape using 
workspace O(log ]uk]). ) For brevity, we may say "the ring ( J ,  a, l, r)" to 
mean "the ring ( d ,  a) with representation (l, r)." 

An implementation for a map (fi O) from a ring ( d ,  a, l, r) to a ring 
(5?,fl, m,s )  is a sequence F =  {F1,F 2 .... } of functions such that 
F ,  : {0, 1 }t(,) ~ {0, 1 }mt~(")) and 

S ,~,~(Fn(U ) ) =f ( r , (u ) )  

for all n in N and u in {0, 1 }t(n). The notion of implementation applies to the 
more general case f:  d k ~ 57 in the obvious way. 

For a natural number k, an implementation F will be said to be in NC ~ if 
there is a log-space uniform sequence N =  {N~, N 2 .... } of Boolean networks 
such that Nn computes Fn, is of size n °~) and is of depth O((log n) k) for all 
n in N. (See Borodin (1977) and Ruzzo (1981) for more details concerning 
uniform sequences of networks.) An implementation F will be said to be in 
NC if it is in NC k for some k in N. (See Pippenger (1979) and Ruzzo (1981) 
for further results on these classes.) By a result of Borodin (1977), if a 
function has an implementation in NC k for some k/> 1, then it is computable 
in space log k. 

For a natural number k and a function R: N ~ N satisfying R(n) ~ n, an 
implementation F will be said to be in NCk(R) if there is a (log R)-space 
uniform sequence N--- {N1, N 2,... } of networks such that N,  computes F , ,  is 
of size R(n) °~1) and is of depth O((logR(n))  k) for all n ) 1  in N. An 
implementation F will be said to be in NC(R) if it is in NCk(R) for some k 
in N. (The classes NCk(R) are defined as NC k and NC, with n replaced by 
R(n) in all resource bounds.) If a function has an implementation in NCk(2 s) 
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for some k~> 1 and some function S satisfying S(n)>~log2n, then it is 
computable in space S k. 

By addition in d we shall mean the map f :  ~ × J ~  J for which 
f ( x , y )  = x +y ,  by negation in d we shall mean the map f :  d ~ d for 
which f ( x ) = - x  and by multiplication in d we shall mean the map 
f:  J × d ~ J for which f ( x , y ) =  xy. An implementation for addition or 
negation will be called efficient if it is in N C  ° and an implementation for 
multiplication will be called efficient if it is in N C  1. We shall say that a ring 
( d ,  a) is well endowed if there is a succinct uniform representation with 
respect to which it has efficient implementations for addition, negation, and 
multiplication. 

Returning to the ring of integers, recall ~(x)= rlogp(ix ] + 1)} (the number 
of p-ary digits needed to represent x). For p >~ 2 standard p-ary notation is 
(essentially) a succinct represenation for (Z, if), but it does not yield an 
implementation for addition in N C  °. For p ~> 3 we shall now construct a 
succinct representation (l, r) for (Z, ~) with respect to which there are 
implementations for addition and negation in N C  ° and an implementation 
for multiplication in N C L  

For n~>l in rN, define P n : { - ( P - 1 ) , . . . , - 1 , 0 , 1  ..... ( p - 1 ) } " ~ Z  by 
pn(u 1 ... u,) = Y~l.<<k<, UkP k-1 for Ul,..., U, in {--(p -- 1),..., --1, 
0, 1 , . . , ( p - -  1)}. Clearly Z,  is included in p , ( { - ( p -  1) ..... - 1 ,  
0, 1 , . . . , ( p - i ) } " )  for all n>/1  in ~. By encoding each symbol of 
{ - ( p  - 1),..., - 1 ,  0, 1,..., (p - 1)} as a string of flog2(2p - 1)] symbols from 
{0, 1}, we can obtain from p =  (pl P2,--.) a representation (l,r) with 
l(n) = [log2(2 p -  1)] n. This representation is clearly succinct, and will be 
called the balanced p-ary representation for (Z, ~). This representation is due 
to Avizienis (1961). 

To see that addition (with the bound function # ( n ) = n  + 1) has an 
implementation in N C  °, suppose that we are given Ul,..., un and v~ ..... vn in 
{ - ( p -  1 ) , . , - 1 ,  0, 1 ..... ( p -  1)} and that we wish to compute w~,..., w,+~ 
in { - ( p  - 1),..., - ( p  - 1),..., - 1 ,  0, 1,..., (p - 1)} such that 

Pn+l(Wl "" Wn+l)  = P n ( U l  - . .  Un) ~- Dn(/-)l . . .  Vn). 

Since, for l< . k<~n ,  ]Uk]<~p--1, and ]Vk]<. p -  1, we have ]Uk+Vkl<~ 
2p- -2 ,  SO it is possible to write U k + V k = p x k + y  k with Ixk]~< 1 and 
]Yk] ~<P -- 2. (Here we use the fact that p ~> 3.) If, for 1 ~< k ~< n + 1, we set 
W k = X k _ ~ + y  k, where x 0 = 0  and y , + l = 0 ,  then ]wk]~<p-1  and the 
condition of the preceding paragraph is fulfilled. Since w k depends only on 
u k, Uk_ ~ , V k, and Vk_ ~ , W can be computed from u and v in N C  °. 

To see that negation (with the bound function 0(n) = n) has an implemen- 
tation in N C  °, observe that each symbol in {--(p - 1) ..... --1, 0, 1 ..... (p -- 1)} 
can be negated separately, since 

pn( ( - -U l )  " '" (--Un))  = - - p n ( U  1 "'" U.).  
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To see that multiplication (with the bound function ~i(n) = 2n + [log2(2n)] ) 
has an implementation in N C  l, suppose that we are given u~,...,u,, and 
v I ..... v n in {--(p - 1) ..... - 1 ,  0, 1 ..... (p - 1)} and that we wish to compute 
wl,..., wo(n) in { - ( p  - 1),..., - 1 ,  0, 1,..., (p  - 1)} such that 

po(,)(w,..., w,( , ))  = p , ( u l  ... u , ) p , ( v  I ... vn). 

Since, for 1 ~i<<.n and 1 <~j<~n, lue[~p- 1 and Ivil~p- 1, we have 
[uivjl <. (p  _ 1)2 ~<p2 _ 1. Thus it is possible to write uiv j =px i ,  j + Y i j  with 
[xi,j[ < p  -- 1 and [Yi,g[ ~<P - 1. If  we set 

and 

z i j =  x i j _  i if i + l ~ j  ~ n + i, 

= O otherwise, 

Zn+i,j = J i , j - i+  l 

= 0  

for l ~ < i < n a n d  l~<j~<2n,  then 

if i + l ~ j < ~ n + i - 1 ,  

otherwise, 

Z Pzn(Zi, l "'" Z i ,2n )=Pn(Ul  "'" Un)Pn(Vl "'" lJn)" 
l<.i<~2n 

Since zi,j depends only on u i and vj_i,  and z,+i~ i depends only on u i and 
vj_i+ l, z can be computed from x and y in NC °. If  we compute w~,..., w,(n) 
in { - ( p  - 1),..., - 1 ,  0, 1,..., (p - i)} such that 

pO(n)(Wl ""  Worn) ) =- ~ .  PZn(2i,l . . .  Zi,zn), 
l~i<~2n 

the condition of the preceding paragraph will be fulfilled. By iterated 
addition (see Corollary 3.7), we can compute w from z in NC 1. 

We have proved 

PROPOSITION 2.1. The ring o f  integers is well endowed, using balanced 
p-ary representations for  p >~ 3. 

In computing integer functions, one might prefer standard p-ary represen- 
tations to balanced p-ary representations. The former notion can be 
formalized as: 

For n/> 1 in IN, define an:  { -1 ,  0, 1} × {0 ..... p -  1}"--, 2 by 

Gn(U0Ul "'" Un) = U0 Z Ukpk--1 
l~k<~n 
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for u 0 in { - 1 , 0 ,  1} and u~,...,u n in {0 ..... p -  1}. Clearly 7/n is included in 
en({-1 ,  0, 1 } × {0,...,p - 1 }n) for all n >~ 1 in ~. By encoding each symbol 
of  { -1 ,  0, 1} as a string of  two symbols from {0, 1 }, and each symbol of 
{0 ..... p - 1 }  as a string of  [log2p ] symbols from {0, 1}, we obtain from 

= (or 1, e2,... ) a representation (m, s) with m(n) = 2 + flog2p ] n. This 
representation is clearly succinct, and will be called the standard p-ary 
representation for (Z, ~). 

We shall prove 

PROPOSITION 2:2. For p >/3, conversion f rom standard to balanced p- 
ary representations has an implementation in N C  °, and conversion f rom 
balanced to standard p-ary representations has an implementation in N C  1. 

It is easy to see that conversion from standard p-ary to balanced p-ary has 
an implementation in N C  °. Simply observe that the sign can be affixed to 
each symbol in { 0 , . . . , p -  1} separately, since 

Dn((~ /0Ul )  "°" ( U 0 U n ) )  = O'n(U0Ul . - .  Un). 

To see that conversion from balanced p-ary to standard p-ary has an 
implementation in N C  ~, suppose that we are given u 1,...,u n in 
{ - ( p - 1 ) , . . . ,  - 1 ,  0, 1 ..... ( p - 1 ) }  and that we wish to compute v 0 in 
{-1 ,  0, 1} and v I ..... v, in / 0 , . . . , p -  1} such that 

 n(VoV  . . .  v n ) = P n ( U ,  "" Un). 

The sign v o is the sign of  the most significant nonzero digit of  uj ... u n 
(zero if all the digits of  u I ..- u ,  are zero). Let a 0 = 0 and for 1 ~< k~< n, 
define a k i n  { - 1 , 0 , 1 }  b y a  k - - - 1  i f u  k < O, a k =  l i f u  k > O a n d a  k = a  k 1 
otherwise. Then v 0 = a n. Thus v 0 can be computed as the final state of  a 
finite-state machine that makes a single pass over the string u. 

The digits of v 1 . . . .  v n are obtained from those of  u I ... u n by converting 
digits of  the "wrong"  sign to those of  the "right" sign, which is done by 
"borrowing" from more significant digits. Let  b 0 = 0 and for 1 ~< k ~< n define 
b k in { - 1 , 0 , 1 }  and v k in { 0 , . . . , p - i }  by b k = - - i  if v 0 = - - I  and 
u k + b k - l > 0 ,  b k = l  i f v  0 = 1  and u k + b  k _ l < O ,  a n d b  k = O o t h e r w i s e .  Let 
Vk= Vo(Uk+bk_l - -Pbk) .  Then the condition of  the preceding paragraph is 
fulfilled, and the string vl ... v n can be computed by a finite-state machine 
with initial state v 0 that makes a single pass over the string u. 

Since functions computed by finite-state machines have implementations 
in NC 1 (see Ofman, 1963 or Ladner and Fischer, 1980), conversion from 
balanced p-ary to standard p-ary has an implementation in N C  1. 

We have defined standard p-ary for p >~ 2 and balanced p-ary for p >/3. 
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For p = 2, balanced p-ary does not yield efficient implementations. It is easy, 
however, to convert from standard 2-ary to standard 4-ary and back in N C  ° 
(by combining successive pairs of 2-ary digits). 

3. CONSTRUCTING NEW WELL-ENDOWED RINGS FROM OLD ONES 

If the ring ~ has a length function a, then the direct product d k of k 
copies of J "  has a natural length function a k given by 

ak(xl ,..., Xk) = max{a(xO,..., a(Xk) }. 

We shall write ( d ,  a) k for the ring j k  with the length function u k. 
More generally, if ~ is an algebra of dimension k over sO" with structure 

coefficients t = {th,~,:}l<h<k, 1-<<i<k, l < j ~  in s~¢ SO that 

[ x + y ] h = x h + y h ,  

= 

and 

[xy]h  = t h , i j x i  y j ,  
l <~ i ~ k , l  <~j<~k 

for all x = ( x l , . . . , x k )  a n d y = ( y l , . . . , y k )  in ~ ,  and l<~h<~k,  and i r a  is a 
length function for ~¢', then fl, given by 

fl(Xl ,..., Xk) = max{a(Xl) ..... a(Xk) } 

is a natural length function for ~ .  We shall write ( d ,  a)[~]/(A(]3)) for the 
ring of polynomials in the indeterminate ~ with coefficients in sO" modulo the 
polynomial A(~) (assuming the leading coefficient of A(~) is a unit in d ) ,  
and ( H ,  a) kxk for the ring of k by k matrices with entries in d ,  when they 
are endowed with length functions in this way. 

Just as a length function a for J extends in a natural way to a length 
function for any finite-dimensional algebra over J ' ,  a representation (l, r) for 
( d , a )  extends in a natural way to a representation for any finite- 
dimensional algebra over ( J , a )  (by representing each component 
separately) and implementations of addition, negation, and multiplication for 
(~¢, a, l, r) extend in a natural way to implementations for any finite- 
dimensional algebra over ( d , a , l , r )  (by computing each component 
separately, using the formulae in the preceding paragraph). Furthermore, 
succinct uniform representations extend to succinct uniform representations 
and efficient implementations extend to efficient implementations. We 
summarize these results as 
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PROPOSITION 3.1. I f  ( J ,  a) is a well-endowed ring and ( ~ , f l )  is a 
finite-dimensional algebra over (H, a), then (~, f l )  is a naturally well 
endowed. 

COROLLARY 3.2. I f  ( d ,  a) is well endowed, then ( d ,  a) k is naturally 
well endowed. 

C O R O L L A R Y  3.3. I f  ( d ,  a) is well endowed, then (~¢', a)[~]l(A(~)) is 
naturally well endowed. 

COROLLARY 3.4. I f  (~', a) is well endowed, then ( d ,  a) k×k is naturally 
well endowed. 

We now turn our attention to infinite-dimensional algebras. 
Let d be a ring. Let d ~ denote the weak direct product of a countably 

infinite sequence of copies of d ;  that is, the ring of countably infinite 
sequences of elements of J in which all but finitely many components 
vanish, with componentwise addition and multiplication. By the order ord(x) 
of an element x = (xl ,  x2,... ) in H ~ we shall mean the largest n such that x n 
does not vanish. If d has a length function a, then d ~ has a natural length 
function a °°, given by 

a °° ( x ) = m a x { o r d ( x ) ,  max a(x.)}. 
1 ~<n< z~o 

We shall write ( d ,  a)  ~ for ( d  ~, a~) .  If ( d ,  a)  has a representation (l, r), 
then ( d ,  a)  ~ has a natural representation (I ~, r~) ,  given by l~(n)= nl(n) 
and 

r~  (ul ... Un) = (rn(Ul),... , rn(Un) , 0,...) 

for all n in N and u 1,..., u n in {0, 1 }/{,). We shall write (l, r) ~ for (l ~, r~) .  If 
(l, r) is succinct and uniform, then so is (l, r) ~. Furthermore, if (J~¢, a)  has, 
with respect to (l, r), implementations for addition and negation in NC ° and 
an implementation for multiplication in NC 1, then so does ( d ,  a) ~ with 
respect to (l, r) °°. 

We summarize these results as 

PROPOSITION 3.5. I f  the ring J is well endowed, then the ring s,¢oo is 
naturally well endowed. 

We shall say that a map f :  s~¢ × s,¢-~ s~¢ is associative i f f ( x , f ( y ,  z))= 
f ( f ( x ,  y), z) for all x, y, z in d ,  and e is a neutral element f o r f  if f (x, e) = x 
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for all x in d .  Let ~ denote the strong direct product product of a 
countably infinite sequence of copies of d ;  that is, the ring of coun- 
tably infinite sequences of elements of d with componentwise addition 
and multiplication. Then f * :  d °~ -~ s¢ ° (iterated f )  is defined by 

f * ( x l ,  x2, x 3 .... ) = (x 1 , f (xl ,  X z ) , f ( f ( x l ,  x2) , x3),... ). The ring S is not, in 
general, well endowed, because it does not inherit a length function from J 
in a natural way. Nevertheless, we can speak of an implementation o f f *  as 
follows. 

Let d have length function a and representation (l, r). Suppose f is 
associative and has bound function ~, where ~(n)>/n  for all n. Let 
~*(n)=~fl°g2"l(n); that is, ~ composed with itself [log2n ] times and 
evaluated at n. Now suppose x C J ~ ,  1 ~< k ~< n, and am(x) ~< n. Then the 
element [ f* (x ) ]  k can be constructed by a balanced binary tree of 
applications off ,  so that a ( [ f * ( x ) ] k )  <<. 0 FIog2k l(n ) ~< O*(n)- 

An implementation for f *  is a sequence F * =  {F* ,F* , . . . }  of functions 
such that F* : {0,1}"/(") ~ {0,1} "l(~*(")) and for all u in {0,1} "t~"l, 
F*(u)  = w l w  2 ... w , ,  where w k ~ {0, 1} t(o*("~) and ro.~,)(wk) = [ f * ( r ~ ( u ) ) ] k ,  

for 1 <<.k<<.n. 

PROPOSITION 3.6. I f  d is a well endowed ring, and f :  • × ~ ~ ~ /  is 
an associative map with a neutral element and with an implementation in 
NCk  fo r  some k in ~,  then f * :  s ¢ ~  ~ • has an implementation in NCk+L 

The proof is a tree construction (the "parallel prefix algorithm") in the 
same spirit as Ofman (1963) and Ladner and Fischer (1980). The only 
additional complication here is the necessity of "padding" (increasing the 
lengths of) the representations of certain elements computed in the 
implementing networks so that they will be right for the outputs, and right 
for inputs to the subnetworks implementing f. The padding of the represen- 
tation of x is accomplished by computing f ( x ,  e), where e is the neutral 
element. The representations for e are log-space uniform since the represen- 
tation (l, r) is uniform. 

Since addition is associative, has neutral element 0, and has the bound 
function 0(n) = n + O(1), we have 

COROLLARY 3.7. In a well-endowed ring, iterated addition has an 
implementation in N C  1 and a bound funct ion O*(n) = n + O(log n). 

Since multiplication is associative, has neutral element 1, and has the 
bound function O(n) = 2n + O(log n), we have 

COROLLARY 3.8. In a well-endowed ring, iterated multiplication has an 
implementation in N C  2 and a bound funct ion O*(n) = 2n 2 + O(n log n). 
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Let d be a ring. Let s¢ ~[~] denote the ring of polynomials in the indeter- 
minate ~ over ~¢, that is, the ring of formal power series 

0 < k < ~  

in which all but finitely many of the coefficients A k vanish. The degree 
deg(A(~)) of such a polynomial is the largest k such that A k does not vanish. 
If d has a length function a, then J [ ~ ]  has a natural length function a '  
given by 

a'(A(~))=max{deg(A(~)), max a(Ak) }. 
0~<k<~ 

We shall write ( d ,  a)[~] for (d[~] ,  a'). If  ( d ,  a) has representation (l, r), 
then ( d , a ) [ ~ ]  has a natural representation (I',r'), given by I ' (n )=  
(n + 1) l(n) and 

[r'(Uo... u,)]k = r,(uk) if 0 ~< k~< n, 

= 0 otherwise, 

for all n/> 1 in N, u o ..... u, in {0, 1 }/~n) and k in •. We shall write (l, r)[~] 
for (l', r'). If (l, r) is succinct, then so is (l, r)[~]. Furthermore, if ( d ,  a) has, 
with respect to (l, r), implementations for addition and negation in NC ° and 
an implementation for multiplication in NC 1, then so does ( d ,  a)[~] with 
respect to (l, r)[~]. (For multiplication, observe that the sum 

O~j<k 

can be computed in NC l by iterated addition.) 
We summarize these results as 

PROPOSITION 3.9. I f  the ring ~ is well endowed, then the ring d [4] is 
naturally well endowed. 

We close this section with a result which will be useful in computing 
stochastic closures (Section 5). 

Let ~¢ be a commutative ring with unity. Let the map V: d [~] -~ d o0 be 
defined by 

[ V(A (~))]k = (d kA (~)/d~ ~) I~ =1 

for all A(~) in J [ ~ ]  and k in N. 

PROPOSITION 3.10. I f  d is a well-endowed commutative ring with unity, 
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then the map V: d [ ~ ]  ~ s~e "°~ has an implementation in N C  2 and a bound 
function q)(n) = O(n log n). 

The proof depends upon the obvious formula 

[V(A(Q)]k= V. A t l ! / ( l - k ) ! ,  
k ~ l ~ m  

which holds for all k and m in N and all A(~) of degree at most m in J [ ~ ] .  
The array 

F k , l =  1 if k <~ l, 

= 0 otherwise, 

for k >/1 and l/> 1 can be computed (as elements of d )  in N C  °. The array 

G k d = l - k  if k ~ l ,  

= 0 otherwise, 

for k >/1 and l/> 0 can be computed from F in NC 1 by iterated addition on 
the rows. The array 

Hk,  1 = l!/(l - k)! if k ~ l, 

= 0 otherwise, 

for k / > 0  and l> /0  can be computed from G in N C  2 by iterated 
multiplication on the columns. The sum in the formula can be computed 
from A(~) and H in NC ~. The verification of the bound function is 
straightforward and completes the proof of Proposition 3.10. 

4. DETERMINANTS 

Let ~"  be a ring. Let s~ "°°x~ denote the ring of infinite matrices 
{Aid}l<i<~, l<j<oo for which all but finitely many entries Aid vanish. The 
order, ord(A), of such a matrix is the largest k such that at least one of the 
entries AI,k,... ,Ak.~,... ,Ak, ~ does not vanish. If  d has a length function a, 
then j ,  oo×~ has a natural length function a ~ × ~ ,  given by 

a°~ ×°°(A) = max{ord(A),  max a(Aid)}.  
1~<i< o~, l~<j< oo 

We shall write ( J , a )  °°x°° for (d°°x°°,a°°X°°).  If ( J , a )  has a represen- 
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tation (l,r), then ( d , a )  ~x°° has a natural representation (l°°X°°,r~X~), 
given by l°°X~(n)= nZl(n) and 

[rO~×OO(u . . . . . . . . .  
\ I,l U l , .  Un,1 U . , . ) ]  id 

=r,(ui,:) if l ~ i ~ < n  and 

= 0 otherwise, 

1 <~j<~n, 

for all n/> 1 in iN, all u~.~,...,un, n in {0, 1} t(n) and all i>/1 and j />  1 in IN. 
We shall write (l, r) *x°° for (l ~×°°, r°°X*). If (l, r) is succinct and uniform, 
then so is (l ,r)  °°x°°. Furthermore, if ( J , a )  has, with respect to (l, r), 
implementations for addition and negation in NC ° and an implementation 
for multiplication in NC 1, then so does ( J , a )  °°x~ with respect to 
(l, r) °~x°~. (For multiplication, observe that the sum 

[AB]i,k= ~ Ai,:Bi,k 
1 ~<j< oo 

can be computed in NC ~ by iterated addition--see Corollary 3.7.) 
We summarize these results as 

PROPOSITION 4.1. I f  the ring d is well endowed, then the ring a/°°x°° 
is naturally well endowed. 

Let sO" be a commutative ring with unity. Let the map D: d°°x°°-~ d °° 

be defined by 

= ,.<:.<<0 

for all A in d °°x~° and k>~ 1 in N, where A denotes the determinant. 

PROPOSITION 4.2. I f  d is a well-endowed commutative ring with unity, 
then the map D: ad°°x°° --+ d °° has an implementation in NC 2 with a bound 
function O(n) = n°m.  

The proof depends on the existence of an appropriate log-space uniform 
sequence {61, 62,.. } of arithmetic circuits such that ft, computes the deter- 
minant of an n X n integer matrix, n = 1,2 ..... Such circuits are described in 
(Borodin et al., 1982), but a simpler and more direct construction is given by 
Berkowitz in (1982). (Csanky's method (1976) is not general enough for our 
purposes since it requires division by integer constants.) 

To describe the method in (Berkowitz, 1982), let B be an arbitrary n X n 
matrix over d .  For 1 ~ t ~< n -- 1 let M t be the t X t lower right submatrix of 
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B, let R t be the 1 × t row submatrix immediately above Mr, and let S t be the 
t × 1 column submatrix immediately to the left of M t. That is, 

[Mt]i j=B,- t+i , ,  t+i, l < ~ i , j < t  

[Rt]l , j=Bn-t,n t+j, 1 <~ j~ t  

[St]i, , = B .  t+i,,-t ,  l<~i<~t. 

For 0 ~< t ~  n -  1 let Ct be the (t + 2) × (t + 1) matrix over d defined as 
follows: 

[Ct]ij = --R tMi-J-  2St, 

= B n _ t , n _ t ,  

= O, 

In particular, C O 

1 <~j<~i--2, 

j = i - - 1 ,  

j = i ,  

i + l < ~ j ~ t +  l. 

= [B1]. Then for 1 ~t<~n,  the matrix product 1-I~-1Ct-k 
is a (t + 1)X 1 column matrix comprising the coefficients of the charac- 
teristic polynomial A(M t --,~I) of Mr, where we define Mn = B. Therefore, 

= [ c ,  , c ,  2 . . .  Co l , , , .  

The above formula for the determinant can be implemented using iterated 
matrix multiplication (Corollary3.8) and padding (see the proof of 
Proposition 3.6). This completes the proof of Proposition 4.2. 

In Section 6 we shall need the fact that determinants of matrices whose 
entries are rational functions can be computed in NC 2. This does not follow 
immediately from Proposition 4.2, because the field of rational functions 
does not seem to be a well-endowed ring. However, that proposition can be 
generalized to apply to the field of fractions of any well-endowed integral 
domain. 

Let ( d ,  a, l, r) be a well-endowed integral domain. Let J '  be the field of 
fractions of J .  Then d '  inherits a natural representation (l', r ' )  from (l, r), 
where l ' (n)= 2/(n) and 

r,(uv) = r,(u)/r,(v) if r,(v) 4= O, 

= undefined if r,(v) = O, 

for all u, v C {0, 1} ""~. Notice that (l', r ' )  is not strictly a representation in 
the sense of Section 2, because ~¢'  does not inherit a length function a '  from 
a satisfying conditions (1) and (2) in any obvious way. Nevertheless (l', r ' )  
is appropriate for implementing the determinant function D. 
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COROLLARY 4.3. Let d be a well-endowed integral domain and let d '  
be its field of fractions. Then the map D: ( d ' ) ~ × ~ ( d ' )  °~ has an 
implementation in NC 2. 

To prove the corollary, note that the input to the nth network 
implementing D represents an n X n matrix A with each element A u 
presented as a fraction xo/yij, with xij,ytj in d .  (We assume yij :~ 0.) The 
network computes the matrix B, where Bi j=xi j~[k~jy ik  by iterated 
multiplication, in N C  2. Then A(B) is computed in NC z by Proposition 4.2, 
and the output is A ( A ) = A ( B ) / Y ,  where Y =  I~ijYij is computed by iterated 
multiplication. 

COROLLARY 4.4. The determinant of an n × n matrbc of rational 
functions can be computed in NC 2, where the entries are presented as pairs 
of  polynomials of (formal) degree n in some constant number of variables 
with n-digit integer coefficients. 

5. COMPLETION OF A STOCHASTIC MATRIX 

Let A be n X n Boolean matrix. By the transitive closure of A we shall 
mean the n X n matrix A '~ given by the formula 

A* = ~ A t, 
X..-.. 

0~<t<~ 

where A t denotes the tth Boolean power ofA (A ° denotes the n X n Boolean 
identity matrix) and addition and multiplication of Boolean values are inter- 
preted as disjuction and conjuction, respectively. A simple argument shows 
that A* is given by the finite sum 

and thus by the formula 

A* = ~ A t, 
o < t < n  

A* = ( I + A )  n-1. 

Since the Boolean product of two n × n matrices can be computed in 
Boolean parallel time O(log n), it follows that A* can be computed from A 
in Boolean parallel time O((log n)2). 

This well-known result can be used to prove the result, due to Savitch 
(1970), that a nondeterministic machine accepting a language in space S can 
be simulated by a deterministic machine recognizing the same language in 
space S 2. We shall establish an analogue of Savitch's theorem for 

643/58/1 3 9 
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probabilistic rather than nondeterministic machines. This leads at once to the 
following problem. 

Let A be an n × n stochastic matrix (an n × n matrix of nonnegative real 
numbers in which the entries in each row sum to 1). By the completion of A 
we shall mean the n X n matrix A* given by the formula 

e l *  = ~_~ A t. 
0 < t < ~  

Some remarks about the interpretation of this formula are in order. If A is 
stochastic, then so is A t for any t in N. Thus, in each term of the sum, the 
sum of all matrix entries is n, and in the ring of n × n matrices of real 
numbers with its usual topology, the sum defining A* always diverges. To 
make sense of this formula, we shall interpret it in the following alternative 
way. For each 1 ~< r ~< n and 1 ~< s ~< n, the partial sum 

}_L [A%s 
o<t<u 

is nonnegative and nondecreasing in u. If it is unbounded, it diverges to ~ ,  
and we shall take [A*]r,s to be ~ .  If it is bounded, it converges to a 
nonnegative real number x, and we shall take [A*]r,s to be x. Thus, the 
entries of A* are nonnegative extended real numbers. 

It happens that if the entries of A are rational, then so are the finite entries 
of A* (this will in fact be proved below). Simon (1981a) showed that if the 
entries of A are drawn from {0, 1 A* ~, 1 }, then can be computed in Boolean 
space O((log n)6). He used this result to show that a probabilistic machine 
accepting a language in space S can be simulated by a deterministic machine 
recognizing the same language in space S 6. Gill, Hunt, and Simon (1980) 
used this result in turn to show that a probabilistic machine computing a 
function in space S can be simulated by a deterministic machine computing 
the same function in space S 36, and Hunt (1978) subsequently improved this 
result from S 36 to S 6. 

In this section, we shall show that if the entries of an n X n stochastic 
matrix A are rational, then A* can be computed in NC 2 (and thus in 
Boolean space O((log n)2)). We shall use this result in the next section to 
improve the simulations of probabilistic machines by deterministic machines 
just cited from S 6 to S z. This improvement constitutes a generalization of 
Savitch's theorem, since the languages accepted by probabilistic machines in 
space S include those accepted by nondeterministic machines in space S. 

We shall prove 

PROPOSITION 5.1. I f  A is an n × n rational stochastic matrix, whose 
entries are given as pairs of  integers (numerator, denominator) having 
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standard radix representations, then its completion closure A*  can be 
computed in the same form in NC 2. 

Let A be an n X n rational stochastic matrix. We wish to compute the 
(r, s)th entry of its completion: 

• A t [A'Jr ,s= lim ~ [ ]r,s. 
u--}oo O<~t<~u 

Now consider the ring @[ [~]] of formal power series in indeterminate ~ with 
rational coefficients. Since A is stochastic, the series ~.0<t<oo [At]r,s~ t 
converges for each real ~ in the interval 0 ~ <  1. Further, the sum 
)~o<t<.u[At]r,,~ t is monotone increasing in both u and 4, so that 
lim~Tl~o<t<oo [At]r,s ~t_= limu_, ~ Y]o<t-<~ [At]r,s, where limit I indicates 
that ~ is restricted to values less than 1. Therefore, 

• [A t l ~ t  [A*]r , ,=~i~ E t Jr,, • 
0 ~ t < o o  

Let @"×"[[~]] denote the ring of formal power series in indeterminate 
with n × n rational matrices as coefficients. The formal power series I - A ~  
has a two-sided inverse in this ring, namely 

( I - A ~ )  I =  V' At~ t, 
O~<t<co 

as can be verified directly by multiplication. Now observe that @nxn[[~]] is 
isomorphic to @[[~]]nx,, the ring of matrices with formal power series as 
elements, by the obvious bijection. Hence we may write 

[(I - A ¢ )  ]r,s W ' ' = .,..., [A ]r,s~" 
0~<t<oo 

Therefore 

- A , )  ]r.,. [A.]r,s = lim [(/ -1 

For the purpose of evaluating the right-hand side of this equation, ( I -  A~)-1 
may be regarded as an element of O(~) "x", since the subring of @(~) 
consisting of those rational functions with no pole at ~ = 0 is naturally a 
subring of @[[4]]. Hence by Corollary 4.4 and Cramer's rule, the function of 
A with value [ ( I -A~) - l ] r , s ,  which can be expressed and computed as a 
quotient of integer polynomials P(~)/Q(~), is in NC 2. 

It remains to consider the limiting process in the formula 
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The question, of course, is whether or not the rational function represented 
by P(~)/Q(~) has a pole at ~ = 1: if so, then [A*]~,s = m. If not, then it 
assumes a finite value x and [A *]r.s = x. It does not suffice to inquire as to 
whether or not not Q(1) = 0, for P(~) and Q(~) might possess some number 
of common zeros at ~ =  1 without the rational function represented by 
P(~)/Q(~) having a pole at ~ = 1. One solution to this problem is to eliminate 
common factors of (1 - ~ )  from P(~) and Q(~) by division, using Newton's 
method to perform division in NC z (see, e.g., Borodin and Munro (1975, 
Theorem 4.4.1)). It is possible to avoid division, however, in the following 
way. 

Let p denote the smallest natural number m such that [V(P(~))]m= 
(dmp(~)/d~ m) [g=l does not vanish, and let q denote the smallest natural 
number m such that [V(Q(~))]m= (d'nQ(~)/d~ m) Ig=l does not vanish. By 
l'H6pital's rule, if p < q, then 

lira P(~) /Q(~)  = oo, 
gYl 

and if p/> q, then 

~i~ P(~)/Q(~) = [ v(P(~) ) ]q/[ V(Q(~) ) ]q. 

These computations can be performed in NC z by Proposition 3.10. This 
completes the proof of Proposition 5.1. 

6. SPACE-BOUNDED PROBABILISTIC MACHINES 

In this section we shall prove that a probabilistic machine running in 
space S can be simulated by a deterministic machine running in space S 2. 
First, however, we shall need a lemma concerning the computation of 
probabilities. 

An n X n stochastic matrix A can be regarded as a Markov process with 
states {1,..., n}, with A,.,s being the probability of transition from state r to 
state s in one step. By elementary arguments, [At]r,s is the probability of 
transition from state r to state s in t steps, and [A*]r,s is the expected 
number of steps that A spends in state s when started in state r. If state s 
cannot return to itself in one or more steps, then [.4']~,~ is the probability 
that A ever enters state s when started in state r. 

Let {i}, J and K be mutually disjoint subsets of {1,.,., n}. We shall denote 
by P(A: i ~ J; K) the probability that the process A, started in state i, enters 
a state in J without previously entering a state in K. We shall abbreviate 
P(A: i ~ J; (~) by P(A: i ~ J). 
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We shall assume that a subset H of {1,..., n} is represented by its charac- 
teristic vector 

~ r l ~ h ~ n .  

x H ( h ) = l  if h e n ,  

= 0 otherwise, 

LEMMA 6.1. Let A be an n × n stochastic matrix whose entries are 
drawn from {0, 1 ~, 1 }, and let /i}, J, and K be mutually disjoint subsets of  
I 1,..., n }. The probability P(A : i ~ J; K) can be computed from A, i, J, and K 
in NC 2. 

Define the (n + 2) × (n + 2) stochastic matrix B with entries drawn from 
{0,½, 1 t as follows. For 1 ~ r < ~ n  and 1 <~s<~n, let Br , s=Ar ,  s i f s  is not in 
J o r K a n d B r , s - - - = 0 i f s i s i n J o r K .  For l~<r~<n,  let 

and 

Br,n+ 1 ~ ~ Ar,s 
sEJ 

Br,n+ 2 ~ ~ At,s" 
sEK 

For n + l E r ~ < n + 2 , 1 e t B r ,  s = 0 f o r  l ~ < s ~ < n + l  and letBr,n+ 2 = l . T h e  
process B mimics A until A enters a state of J or K. When A enters a state of 
J, B enters the state n + 1, remains there for one step, then enters the 
absorbing state n + 2. When A enters a state of K, B enters the absorbing 
state n + 2. The probability P(A: i ~  J ;K)  is the probability that B ever 
enters state n + 1 when started in state i. Since state n + 1 cannot return to 
itself in one or more steps, this equals the expected number of steps that B 
spends in state n + 1 when started in state i, which is [B*]i,n+l. The matrix 
B can be computed from A in NC 1, and by Proposition 5.1, [B*]i,n+l can be 
computed from B in NC 2. This completes the proof of Lemma 6.1. 

We shall define a probabilistic machine to be a machine funished with two 
alternative deterministic transition functions. At each step, the machine 
moves in accordance with one or the other of its transition functions, 
depending upon the outcome of an independent unbiased coin flip. 

We shall assume that a machine has a finite control, an input tape bearing 
an input string X of length k which is accessed through a two-way read-only 
input head and a work tape of length S(k)  (where S is a constructable 
function satisfying S(k)>/ log z k) which is accessed through a two-way 
read/write work head. 

Let us consider the acceptance of languages. For this we shall assume that 
the finite control has certain designated accepting states. We shall say that a 
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probabilistic machine accepts that language comprising the input strings for 
which the probability that the machine ever enters an accepting state strictly 
exceeds 7.1 (This definition assigns a language to each probabilistic machine.) 

This is not the only possible definition of a probabilistic machine 
accepting a language, but it seems to be the broadest, and for our purposes, 
the broader the definition of acceptance the stronger our results. In any case, 
it possesses the following two attractive properties: (1) if a language can be 
accepted by a nondeterministic machine in space S, then it can be accepted 
by a probabilistic machine in space S (this is trivial); and (2) if a language 
can be accepted by a probabilistic machine in space S, then so can its 
complement (see Simon, 1981b). 

Let M be a probabilistic machine that accepts a language L in space S. By 
a configuration of M for input X of length k we shall mean a natural number 
in t 1 ..... k}, representing the position of the input head, a symbol of the input 
alphabet, representing the symbol scanned by the input head, a natural 
number in { 1,..., S(k)}, representing the position of the work head, a string of 
length S(k)  of symbols of the work alphabet, representing the condition of 
the work tape, and, finally, a symbol representing the state of the finite 
control. For a given input string X of length k, there are at most 
V(k) = 2 °(s~k)) configurations of M for X, and these configurations can be 
encoded as elements of {1,..., V(k)} in a natural way. Furthermore, the 
V(k) X V(k) one-step transition matrix A is a stochastic matrix with entries 
drawn from {0, ½, 1 } which can be computed from X in NC°(V)  = NC°(2s). 
The initial configuration i and the set of accepting configurations J (the set 
of configurations containing an accepting state) can also be computed from 
X in N C ° ( V ) =  NC°(2s). 

We can now construct a deterministic machine M'  that recognizes the 
language L in space S 2. The machine M'  simply computes P(A: i -4J ) ,  
accepts if it strictly exceeds 1, and rejects otherwise. By Lemma 6.1 and the 
observations of the preceding paragraph, the computation of M'  can be 
performed in NC2(V) = NC2(2 s) and thus in space S 2. 

We have proved 

PROPOSITION 6.2. I f  a language can be accepted by a probabilistic 
machine in space S, it can be recognized in NC2(2s). 

COROLLARY 6.3. I f  a language can be accepted by a probabilistic 
machine in logarithmic space, it can be recognized in NC 2. 

Now let us consider the computation of functions. For this we shall 
assume that the machine has an output tape accessed through a one-way 
write-only output head. We shall say that a probabilistic machine M 
computes that partial function whose domain comprises those input strings X 
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for which there exists an output string Y such that with probability strictly 
exceeding ½, M halts after writing Y as output, and whose value for the 
string X in its domain is the string Y. (For each input X there can be at most 
one output Y satisfying this definition, so the definition assigns a partial 
function to each probabilistic machine.) 

Let M be a probabilistic machine computing a partial function f By a 
theorem of Gill (1977), if for some input string X of length k the machine M 
halts after writing a string Y of length l as output with probability strictly 
exceeding I ,  then l <<, V(k). By an output situation for an input X of length k, 
we shall mean (1) the element 0, representing the fact that M has not yet 
written an output symbol, (2) a pair (m, a), where m is a natural number in 
{ 1 ..... V(k) } and a is an element of the output alphabet, representing the fact 
that M has written m output symbols, the last of which was ~, or (3) the 
element ~o, representing the fact that M has written more than V(k) output 
symbols. By a superconfiguration for an input string X we shall mean a 
configuration for X together with an output situation for X. For a given input 
X of length k, there are at most W(k)=  O(V(k)2)= 2 °~s(k)) supercon- 
figurations for X, and these superconfigurations can be encoded as elements 
of {1,..., W(k)} in a natural way. Furthermore, the W(k)× W(k) one-step 
transition matrix A is a stochastic matrix with entries drawn from {0, 1 3,1} 
which can be computed from X in NC°(W) = NC°(2s). 

We shall now construct a deterministic machine that computes the partial 
function f in space S 2. We shall do this in two steps. First we shall construct 
a deterministic machine M" that computes a total function g that is an 
extension of f in space S 2. (This construction could be reduced to 
Proposition6.2 rather than the more basic Lemma6.1.) Then we shall 
construct a deterministic machine M'" that recognizes the domain o f f  in 
space S 2. Combining these two constructions completes the proof. 

We shall say that an output situation (m, o) is appropriate for an input X 
if M enters a superconfiguration having output situation (rn, o) with 
probability strictly exceeding I .  Let i be the initial superconfiguration and let 
J be the set of superconfigurations having output situation (m, a). Then 
(m,o) is appropriate if and only if P(A: i~J )> 1. Thus, by Lemma 6.1, 
whether or not a given output situation is appropriate for X can be computed 
from X in NCZ(W) =NC2(2 s) and thus in space S 2. 

The machine M" with input of length k behaves as follows. For each 
natural number m from 1 to V(k) in turn, it determines whether or not there 
exists an output symbol a such that (m, a) is appropriate for X. If not, M" 
halts. If so, then this cr is unique (since at most one symbol can be written as 
the mth output with probability strictly exceeding 1); M" writes tr as the mth 
output and proceeds to the next value of m. 

The machine M" computes a total function g that is an extension off ,  for 
if M halts after writing a string Y of length l as output with probability 
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strictly exceeding 5, then for each 1 <~m<~l, if a is the mth symbol of Y, 
then certainly M enters a superconfigurtion having output situation (m, a) 
with probability strictly exceeding 1 ~. Furthermore, by the observations of the 
preceding paragraphs, the computation of M" can be performed in 
NC2(W) = NC2(2 s) and thus in space S 2, which completes the first part of 
the proof. 

The machine M "  with input X of length k behaves as follows. First, it 
computes the length l and the last symbol p of g(X). This can be done in 
NC2(W)=NC2(2 s) and thus in space S 2. Let i be the initial supercon- 
figuration, let J be the set of halting superconfigurations having output 
situation (l, p) and let K be the set of supereonfigurations having an output 
situation (m, a) that is not appropriate for X. These can also be computed 
from X in NC2(W)= NC2(2 s) and thus in space S 2. If P(A:i ~ J; K) > ½ 
then M ' "  accepts, otherwise it rejects. 

The probability P(A : i ~ J; K) is the probability that M halts after writing 
g(X) as output. Thus, since g is an extension off ,  M ' "  recognizes the domain 
of f .  Furthermore, by Lemma 6.1, M ' "  can perform its computation in 
NC2(W) =NC2(2 s) and thus in space S 2. 

We have shown 

PROPOSmON 6.4. I f  a partial function can be computed by a 
probabilistie machine in space S, it can be computed in NCZ(2S). 

COROLLARY 6.5. I f  a partial function can be computed by a probabilistic 
machine in logarithmic space, it can be computed in NC 2. 

7. CONCLUSION AND SOME OPEN PROBLEMS 

Propositions 6.2 and 6.4, the simulation of an S space bounded 
probabilistic Turing machine by an S 2 space bounded deterministic machine, 
provided the original motivation for this paper. It seems that the "technical 
machinery" needed to establish this result is more than one might anticipate 
given that so much of the general approach was already established. On the 
other hand, results such as Corollary 4.3 and Proposition 5.1 (concerning the 
Boolean parallel complexity of the determinant and stochastic completion 
problems) should be of independent interest. Moreover, since Boolean 
circuits are so basic to complexity theory, we feel that the formal concept of 
well-endowed rings (with some of the specific examples developed here) will 
prove useful in other applications. 

One obvious question which we have not pursued is whether or not one 
could prove that certain rings are not well endowed. Of course, it would be a 
breakthrough for complexity theory if one could show that a specific 
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function is not in NC 1 (even fixing the representation), but perhaps the 
simultaneous requirements on implementations for addition and negation 
(NC °) and multiplication (NC 1) are sufficiently strong to induce a negative 
result (even over all succinct and uniform representations). 

That the requirement on multiplication is not as severe as that of addition 
and negation is justified by the applications. However, it is interesting to 
consider the consequence of also insisting that multiplication have an 
implementation in NC °. Would there be any interesting rings satisfying such 
a strong condition? For the ring of integers, with a standard pary digit length 
function, we can obviously have a representation for which multiplication is 
implementable in NC °, but at a terrible cost with respect to addition. 
Namely, represent an integer in terms of its prime factorization and then 
multiplication is reduced to the addition of exponents. Assuming a succinct 
and uniform representation (like the one just mentioned) for which 
multiplication can be implemented in N C  °, what is the best implementation 
for the addition of integers? In particular, can we prove that addition and 
multiplication cannot both be implemented in NC°? 

Sections 4 and 5 establish that the determinant and stochastic completion 
problems are in the Boolean class NC 2. As indicated before, any 
improvement in the Boolean depth required for either of these problems 
would imply a corresponding improvement for Savitch's (1970) well-known 
simulation. A number of perhaps more tractable problems are also worth 
pursuing. Our proof of Proposition 5.1 actually shows that the stochastic 
completion problem is NC 1 reducible to the determinant problems (the 
function V of Proposition 3.10 is clearly NC 1 reducible to integer deter- 
minants). What about the converse reduction? Section 6 shows that the 
stochastic completion problem is NC 1 hard for probabilistic log-space. Is the 
problem computable within this class, thus making it a complete problem for 
the class? Is it possible that the determinant problem is NC 1 hard (and hence 
complete) for NC2? 

Our model of a probabilistic machine is equivalent to one in which an 
infinite sequence of outcomes of independent unbiased coin flips is written on 
an orcle tape which is accessed by the machine through a one-way read-only 
oracle head. Is it possible to extend our simulation results to the case of a 
two-way read-only oracle head? What about the case of a two-way write- 
only output head? 
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