CSCE-637 Complexity Theory

Fall 2020

Instructor: Dr. Jianer Chen

Office: HRBB 338C **Phone:** 845-4259

Office Hours: TR 1:30 pm-3:00 pm

Assignment # 1 (Due September 17, 2020)

1. Write a detailed description of a 1-tape Turing machine that accepts the following language:

UnEqual = $\{x \# y \mid x \text{ and } y \text{ are binary numbers such that } x \neq y\}$.

2. A language L is decidable if there is a Turing machine that always halts and accepts L. We say that a language L_1 is reducible to another language L_2 if there is a Turing machine (i.e., an algorithm) that always halts, and on any (yes or no) instance x_1 of L_1 , produces an instance x_2 of L_2 such that x_1 is a yes-instance of L_1 if and only if x_2 is a yes-instance of L_2 .

Consider the following language:

TEST = $\{(M; x, y) \mid \text{ on input } x, \text{ the Turing machine } M \text{ outputs } y\}.$

Show that the problem Test is undecidable. (*Hint:* write an algorithm that reduce Halting problem to Test, and use the fact that Halting is undecidable.)

- 3. Prove: if P = NP, then every non-trivial problem in P is NP-complete. A problem is non-trivial if it has both YES-instances and NO-instances.
- 4. Give a detailed proof for the following statement: if $L_1 \leq_L L_2$ and $L_2 \leq_L L_3$, then $L_1 \leq_L L_3$.