
CSCE-637 Complexity Theory

Fall 2020

Instructor: Dr. Jianer Chen
Office: HRBB 338C
Phone: 845-4259
Office Hours: TR 1:30 pm–3:00 pm

Solutions to Assignment #2

1. A language L1 is Turing reducible to another language L2, written as L1 ≤p
T L2, if there

is a deterministic polynomial-time oracle Turing machine that uses L2 as its oracle and accepts
the language L1. A language L is NP-hard under Turing reducibility if every language in NP
is Turing reducible to L. Prove: (1) if an NP-hard language under Turing reducibility is in P,
then P = NP; and (2) If a language L1 is Karp (i.e., polynomial-time many-one) reducible to
another language L2, then L1 is Turing reducible to L2.

Proof. (1) Let Q be an NP-hard language under Turing reducibility. Suppose that Q is in P,
i.e., Q is solvable by a deterministic Turing machine MQ (without oracle) in time pQ(n), where
pQ(n) is a polynomial of n. Now let Q′ be any problem in NP. Since Q is NP-hard under Turing
reducibility, there is a deterministic polynomial-time oracle Turing machine M0 using Q as its
oracle that accepts Q′. Let the running time of M0 be bounded by a polynomial p0(n) of n.

Now consider the following deterministic Turing machine M ′Q without oracle: on an input x
of length n, M ′Q simulates the oracle Turing machine M0 on x. Whenever, M0 writes a string y
on its oracle tape and queries on y, M ′Q instead calls the Turing machine MQ on y to determine if
y ∈ Q. Once MQ on y returns with a decision, M ′Q gets the correct answer to the query on y, and
continues simulating M0. The Turing machine M ′Q accepts x if and only if M0 accepts x. Since
every oracle query of M0 is replaced by a call to the deterministic Turing machine MQ (with
no oracle), the Turing machine M ′Q uses no oracle. Since both M0 and MQ are deterministic
Turing machines, the Turing machine M ′Q is also deterministic. Finally, since the running time
of Turing machine M0 is bounded by p0(n), each string y placed on the oracle tape of M0 has
its length bounded by p0(n). Thus, the running time of MQ on y is bounded by pQ(p0(n)).
Now since each step of the Turing machine M0, including the oracle query steps, is replaced
by at most pQ(p0(n)) steps in M ′Q, the running time of the Turing machine M ′Q on input x of
length n is bounded by p0(pQ(p0(n))). Since both p0 and pQ are polynomials, p0(pQ(p0(n))) is a
polynomial of n so the Turing machine M ′Q (without oracle) is a deterministic Turing machine
that runs in polynomial time and accepts the language Q′, i.e., Q′ is in P. Since Q′ is an arbitrary
language in NP, this proves that NP ⊆ P, leading directly to P = NP. This proves that if the
NP-hard language Q under Turing reducibility is in P, then P = NP.

(2) Suppose that L1 is Karp-reducible to L2. By the definition, there is a function f(x)
computable in polynomial time such that x is in L1 if and only if f(x) is in L2. Now construct
an oracle Turing machine MQ using L2 as its oracle, as follows: on input x, MQ computes
y = f(x) and queries if y ∈ L2 on its oracle, MQ accepts x if and only if the answer to the query
on y is yes, which is true if and only if y = f(x) ∈ L2, thus, if and only if x ∈ L1. The oracle

1

Turing machine MQ obviously runs in polynomial time since f(x) is computable in polynomial
time. Therefore, the oracle Turing machine MQ uses L2 as oracle, runs in polynomial time, and
accepts the language L1. That is, the language L1 is Turing reducible to the language L2.

2. Define a language UnSat = {F | F is an unsatisfiable CNF formula}. Prove: UnSat is
NP-hard under Turing reducibility, but is unlikely to be NP-hard under Karp reducibility.

Proof. We first prove that UnSat is NP-hard under Turing reducibility. Note that for a CNF
formula F , F is a yes-instance of UnSat if and only if F is a no-instance of Sat. Let Q be
any problem in NP. Since the Sat problem is NP-complete under Karp-reduction, there is a
polynomial-time computable function f(x) such that x is a yes-instance of Q if and only if f(x)
is a yes-instance of Sat. By the definition, we can assume that f(x) is a valid CNF formula.
Now consider the following oracle Turing machine M0 that uses UnSat as oracle and solves the
problem Q. On input x, M0 first computes f(x) then places f(x) on its oracle tape to query
if f(x) ∈ UnSat. The machine M0 accepts x if and only if the oracle query to f(x) returns
NO. The machine M0 runs in polynomial time since f(x) is computable in polynomial time.
Moreover, M0 accepts x if and only if the query to the CNF formula f(x) on the oracle UnSat
is NO, if and only if f(x) is a satisfiable CNF formula, if and only if x ∈ Q. Thus, the oracle
Turing machine M0 uses UnSat as oracle, accepts Q, and runs in polynomial time. This proves
that Q is Turing-reducible to UnSat. Since Q is an arbitrary problem in NP, this proves that
UnSat is NP-hard under Turing reducibility.

Now we prove that UnSat is unlikely to be NP-hard under Karp-reducibility. Assuming the
contrary that UnSat is NP-hard under Karp-reducibility. Consider any co-NP problem Q. By
definition, the complement Q of Q is in NP. Since UnSat is NP-hard under Karp-reducibility,
there is a polynomial-time computable function f such that x is in Q, i.e., x is not in Q, if
and only if f(x) is in UnSat, i.e., f(x) is not in Sat. This gives that x is in Q if and only if
f(x) is in Sat. Now we construct the following nondeterministic algorithm MQ to solve Q, as
follow. On input x, MQ first computes f(x), then simulates the nondeterministic polynomial-
time algorithm for Sat to solve f(x) (remark: you should be able to construct a nondeterministic
polynomial-time algorithm that solves Sat). Because x is in Q if and only if f(x) is in Sat, this
nondeterministic polynomial-time algorithm MQ solves the problem Q, i.e., the problem Q is in
NP. Since Q is an arbitrary problem in co-NP, this proves that co-NP ⊆ NP. This also leads to
NP ⊆ co-NP, as follows. Let R be a problem in NP, then the complement R is in co-NP. Since

co-NP ⊆ NP, R ∈ NP. This gives R = R is in co-NP. Thus, every problem in NP is in co-NP,
and NP ⊆ co-NP. In conclusion, if UnSat is NP-hard under Karp-reducibility, then we would
have NP = co-NP, which, by complexity theory, is very unlikely.

3. Prove: the polynomial-time hierarchy PH has no complete languages under the polynomial-
time reduction unless PH collapses.

Proof. Assume that the polynomial-time hierarchy PH has a complete language Q under the
polynomial-time reduction. Since Q is in PH, Q ∈ Σp

k for some fixed k. Without loss of
generality, we assume k ≥ 2. Thus, there is a nondeterministic polynomial-time oracle Turing
machine MQ that uses a language B in Σp

k−1 as oracle and accepts Q.

2

Since Q is PH-hard under the polynomial-time reduction, for any problem R in PH, there is
a polynomial-time computable function f such that x is in R if and only if f(x) is in Q.

Now consider the following oracle Turing machine M0 that uses B as oracle and accepts R:
on input x, M0 first computes f(x), then simulates the nondeterministic oracle Turing machine
MQ on input f(x), using oracle B. Thus, the Turing machine M0 is also a nondeterministic
oracle Turing machine. Since x is in R if and only if f(x) is in Q, and since the oracle Turing
machine MQ using oracle B accepts Q, the new oracle Turing machine M0 accepts the language
R. Moreover, since the length of f(x) is bounded by a polynomial of n = |x|, and since MQ

runs in polynomial time, the Turing machine M0 runs in time polynomial in n. Therefore, M0

is a nondeterministic polynomial-time oracle Turing machine that uses oracle B and accepts R.

Since B ∈ Σp
k−1, this proves that R ∈ NPΣp

k−1 = Σp
k. Since R is an arbitrary language in PH,

this shows that all languages in PH are in Σp
k, i.e., the polynomial-time hierarchy PH collapses

to Σp
k. This completes the proof.

4. In the class, we showed that a problem A is in Σp
k if and only if A can be written as

A = {x | ∃|y1|≤pA(|x|)y1∀|y2|≤pA(|x|)y2 · · ·Q|yk|≤pA(|x|)yk FA(x, y1, y2, . . . , yk) = 1},
where FA is a polynomial-time computable Boolean function. Similarly, a problem B is in Πp

k if
and only if B can be written as

B = {x | ∀|y1|≤pB(|x|)y1∃|y2|≤pB(|x|)y2 · · ·Q|yk|≤pB(|x|)yk FB(x, y1, y2, . . . , yk) = 1},
where FB is a polynomial-time computable Boolean function.

Use these characterizations to prove that if for some k ≥ 1, Σp
k = Πp

k, then PH = Σp
k.

Proof. Suppose that Σp
k = Πp

k for some k ≥ 1. Consider a language Ak+1 in Σp
k+1. By the

characterization given above,

Ak+1 = {x | ∃|y1|≤p(|x|)y1∀|y2|≤p(|x|)y2 · · ·Q|yk+1|≤p(|x|)yk+1 F (x, y1, y2, . . . , yk+1) = 1}, (1)

where p is a polynomial and F is a polynomial-time computable Boolean function. Now consider
the language

Bk = {(x, y1) | ∀|y2|≤p(|x|)y2∃|y3|≤p(|x|)y3 · · ·Q|yk+1|≤p(|x|)yk+1 F (x, y1, y2, . . . , yk+1) = 1}. (2)

Starting with a ∀ quantifier, there are k quantifier alternations in the expression for Bk. Thus,
Bk ∈ Πp

k. By the assumption Σp
k = Πp

k, we have Bk ∈ Σp
k. Thus, Bk can also be written as

Bk =

{(x, y1) | ∃|y2|≤p′(|(x,y1)|)y2∀|y3|≤p′(|(x,y1)|)y3 · · ·Q|yk+1|≤p′(|(x,y1)|)yk+1 F ′(x, y1, y2, . . . , yk+1) = 1},

where p′ is a polynomial and F ′ is a polynomial-time computable Boolean function. Since |y1| ≤
p(|x|), p′(|(x, y1)|) is bounded by a polynomial p1 of |x|. Thus, the condition “≤ p′(|(x, y1)|)”
can be replaced by “≤ p1(|x|)”, and Bk can be re-written as

Bk = {(x, y1) | ∃|y2|≤p1(|x|)y2∀|y3|≤p1(|x|)y3 · · ·Q|yk+1|≤p1(|x|)yk+1 F ′(x, y1, y2, . . . , yk+1) = 1}. (3)

From (1) and (2), we can re-write the language Ak+1 as

Ak+1 = {x | ∃|y1|≤p(|x|)y1 (x, y1) ∈ Bk}. (4)

3

Bringing the expression of Bk in (3) into (4), we get

Ak+1 = {x | ∃|y1|≤p(|x|)y1∃|y2|≤p1(|x|)y2∀|y3|≤p1(|x|)y3 · · ·Q|yk+1|≤p1(|x|)yk+1

F ′(x, y1, y2, . . . , yk+1) = 1}
= {x | ∃|(y1,y2)|≤p2(|x|)(y1, y2)∀|y3|≤p2(|x|)y3 · · ·Q|yk+1|≤p2(|x|)yk+1

F ′′(x, y1, y2, . . . , yk+1) = 1}, (5)

where p2(n) = p(n) + p1(n) is a polynomial of n = |x|, and F ′′ is a trivial modification of F ′

such that F ′′(x, y1, y2, . . . , yk+1) = 0 if |y1| > p(|x|), or |yi| > p1(|x|) for any i > 1, — otherwise
F ′′(x, y1, y2, . . . , yk+1) = F ′(x, y1, y2, . . . , yk+1). The Boolean function F ′′ is polynomial-time
computable since the Boolean function F ′ is polynomial-time computable.

By (5), the language Ak+1 can be written as a quantified expression with k alternations,
starting with the quantifier ∃, with p2 being a polynomial and F ′′ being a polynomial-time
computable Boolean function. By the characterization, Ak+1 is in Σp

k. Since Ak+1 is an arbitrary
language in Σp

k+1, this proves Σp
k+1 ⊆ Σp

k, i.e., Σp
k+1 = Σp

k.
The rest is a routine derivation. Assume inductively, Σp

k+h = Σp
k for h > 0. This holds true

for h = 1 as shown above. Now consider Σp
k+h+1 = NPΣp

k+h . By induction, Σp
k+h = Σp

k, thus,

Σp
k+h+1 = NPΣp

k = Σp
k+1 = Σp

k,

and the induction goes through. This proves that Σp
k+h = Σp

k for all h > 0, i.e., PH = Σp
k and

the polynomial-time hierarchy PH collapses to the k-th level Σp
k.

4

