CSCE-637 Complexity Theory

Fall 2020

Instructor: Dr. Jianer Chen

Office: HRBB 338C **Phone:** 845-4259

Office Hours: TR 1:30 pm-3:00 pm

Solutions to Assignment #2

1. A language L_1 is Turing reducible to another language L_2 , written as $L_1 \leq_T^p L_2$, if there is a deterministic polynomial-time oracle Turing machine that uses L_2 as its oracle and accepts the language L_1 . A language L is NP-hard under Turing reducibility if every language in NP is Turing reducible to L. Prove: (1) if an NP-hard language under Turing reducibility is in P, then P = NP; and (2) If a language L_1 is Karp (i.e., polynomial-time many-one) reducible to another language L_2 , then L_1 is Turing reducible to L_2 .

Proof. (1) Let Q be an NP-hard language under Turing reducibility. Suppose that Q is in P, i.e., Q is solvable by a deterministic Turing machine M_Q (without oracle) in time $p_Q(n)$, where $p_Q(n)$ is a polynomial of n. Now let Q' be any problem in NP. Since Q is NP-hard under Turing reducibility, there is a deterministic polynomial-time oracle Turing machine M_0 using Q as its oracle that accepts Q'. Let the running time of M_0 be bounded by a polynomial $p_0(n)$ of n.

Now consider the following deterministic Turing machine $M'_{\mathcal{O}}$ without oracle: on an input x of length n, M'_Q simulates the oracle Turing machine M_0 on x. Whenever, M_0 writes a string yon its oracle tape and queries on y, M'_Q instead calls the Turing machine M_Q on y to determine if $y \in Q$. Once M_Q on y returns with a decision, M'_Q gets the correct answer to the query on y, and continues simulating M_0 . The Turing machine M'_O accepts x if and only if M_0 accepts x. Since every oracle query of M_0 is replaced by a call to the deterministic Turing machine M_Q (with no oracle), the Turing machine M'_Q uses no oracle. Since both M_0 and M_Q are deterministic Turing machines, the Turing machine M'_Q is also deterministic. Finally, since the running time of Turing machine M_0 is bounded by $p_0(n)$, each string y placed on the oracle tape of M_0 has its length bounded by $p_0(n)$. Thus, the running time of M_Q on y is bounded by $p_Q(p_0(n))$. Now since each step of the Turing machine M_0 , including the oracle query steps, is replaced by at most $p_Q(p_0(n))$ steps in M'_Q , the running time of the Turing machine M'_Q on input x of length n is bounded by $p_0(p_Q(p_0(n)))$. Since both p_0 and p_Q are polynomials, $p_0(p_Q(p_0(n)))$ is a polynomial of n so the Turing machine $M'_{\mathcal{O}}$ (without oracle) is a deterministic Turing machine that runs in polynomial time and accepts the language Q', i.e., Q' is in P. Since Q' is an arbitrary language in NP, this proves that NP \subseteq P, leading directly to P = NP. This proves that if the NP-hard language Q under Turing reducibility is in P, then P = NP.

(2) Suppose that L_1 is Karp-reducible to L_2 . By the definition, there is a function f(x) computable in polynomial time such that x is in L_1 if and only if f(x) is in L_2 . Now construct an oracle Turing machine M_Q using L_2 as its oracle, as follows: on input x, M_Q computes y = f(x) and queries if $y \in L_2$ on its oracle, M_Q accepts x if and only if the answer to the query on y is yes, which is true if and only if $y = f(x) \in L_2$, thus, if and only if $x \in L_1$. The oracle

Turing machine M_Q obviously runs in polynomial time since f(x) is computable in polynomial time. Therefore, the oracle Turing machine M_Q uses L_2 as oracle, runs in polynomial time, and accepts the language L_1 . That is, the language L_1 is Turing reducible to the language L_2 .

2. Define a language UNSAT = $\{F \mid F \text{ is an unsatisfiable CNF formula}\}$. Prove: UNSAT is NP-hard under Turing reducibility, but is unlikely to be NP-hard under Karp reducibility.

Proof. We first prove that UNSAT is NP-hard under Turing reducibility. Note that for a CNF formula F, F is a yes-instance of UNSAT if and only if F is a no-instance of SAT. Let Q be any problem in NP. Since the SAT problem is NP-complete under Karp-reduction, there is a polynomial-time computable function f(x) such that x is a yes-instance of Q if and only if f(x) is a yes-instance of SAT. By the definition, we can assume that f(x) is a valid CNF formula. Now consider the following oracle Turing machine M_0 that uses UNSAT as oracle and solves the problem Q. On input x, M_0 first computes f(x) then places f(x) on its oracle tape to query if $f(x) \in \text{UNSAT}$. The machine M_0 accepts x if and only if the oracle query to f(x) returns NO. The machine M_0 runs in polynomial time since f(x) is computable in polynomial time. Moreover, M_0 accepts x if and only if the query to the CNF formula f(x) on the oracle UNSAT is NO, if and only if f(x) is a satisfiable CNF formula, if and only if $x \in Q$. Thus, the oracle Turing machine M_0 uses UNSAT as oracle, accepts Q, and runs in polynomial time. This proves that Q is Turing-reducible to UNSAT. Since Q is an arbitrary problem in NP, this proves that UNSAT is NP-hard under Turing reducibility.

Now we prove that UNSAT is unlikely to be NP-hard under Karp-reducibility. Assuming the contrary that UNSAT is NP-hard under Karp-reducibility. Consider any co-NP problem Q. By definition, the complement \overline{Q} of Q is in NP. Since UNSAT is NP-hard under Karp-reducibility, there is a polynomial-time computable function f such that x is in \overline{Q} , i.e., x is not in Q, if and only if f(x) is in UNSAT, i.e., f(x) is not in SAT. This gives that x is in Q if and only if f(x) is in SAT. Now we construct the following nondeterministic algorithm M_Q to solve Q, as follow. On input x, M_Q first computes f(x), then simulates the nondeterministic polynomialtime algorithm for SAT to solve f(x) (remark: you should be able to construct a nondeterministic polynomial-time algorithm that solves SAT). Because x is in Q if and only if f(x) is in SAT, this nondeterministic polynomial-time algorithm M_Q solves the problem Q, i.e., the problem Q is in NP. Since Q is an arbitrary problem in co-NP, this proves that co-NP \subseteq NP. This also leads to $NP \subseteq \text{co-NP}$, as follows. Let R be a problem in NP, then the complement R is in co-NP. Since $co-NP \subset NP, \overline{R} \in NP$. This gives $\overline{R} = R$ is in co-NP. Thus, every problem in NP is in co-NP, and NP ⊆ co-NP. In conclusion, if UnSAT is NP-hard under Karp-reducibility, then we would have NP = co-NP, which, by complexity theory, is very unlikely.

3. Prove: the polynomial-time hierarchy PH has no complete languages under the polynomial-time reduction unless PH collapses.

Proof. Assume that the polynomial-time hierarchy PH has a complete language Q under the polynomial-time reduction. Since Q is in PH, $Q \in \Sigma_k^p$ for some fixed k. Without loss of generality, we assume $k \geq 2$. Thus, there is a nondeterministic polynomial-time oracle Turing machine M_Q that uses a language B in Σ_{k-1}^p as oracle and accepts Q.

Since Q is PH-hard under the polynomial-time reduction, for any problem R in PH, there is a polynomial-time computable function f such that x is in R if and only if f(x) is in Q.

Now consider the following oracle Turing machine M_0 that uses B as oracle and accepts R: on input x, M_0 first computes f(x), then simulates the nondeterministic oracle Turing machine M_Q on input f(x), using oracle B. Thus, the Turing machine M_0 is also a nondeterministic oracle Turing machine. Since x is in R if and only if f(x) is in Q, and since the oracle Turing machine M_Q using oracle B accepts Q, the new oracle Turing machine M_0 accepts the language R. Moreover, since the length of f(x) is bounded by a polynomial of n = |x|, and since M_Q runs in polynomial time, the Turing machine M_0 runs in time polynomial in n. Therefore, M_0 is a nondeterministic polynomial-time oracle Turing machine that uses oracle B and accepts B. Since $B \in \Sigma_{k-1}^p$, this proves that $B \in \mathbb{N}^p$ i.e., the polynomial-time hierarchy PH collapses to Σ_k^p . This completes the proof.

4. In the class, we showed that a problem A is in Σ_k^p if and only if A can be written as

$$A = \{x \mid \exists_{|y_1| \le p_A(|x|)} y_1 \forall_{|y_2| \le p_A(|x|)} y_2 \cdots Q_{|y_k| \le p_A(|x|)} y_k F_A(x, y_1, y_2, \dots, y_k) = 1\},\$$

where F_A is a polynomial-time computable Boolean function. Similarly, a problem B is in Π_k^p if and only if B can be written as

$$B = \{x \mid \forall_{|y_1| \le p_B(|x|)} y_1 \exists_{|y_2| \le p_B(|x|)} y_2 \cdots Q_{|y_k| \le p_B(|x|)} y_k \ F_B(x, y_1, y_2, \dots, y_k) = 1\},\$$

where F_B is a polynomial-time computable Boolean function.

Use these characterizations to prove that if for some $k \geq 1$, $\Sigma_k^p = \Pi_k^p$, then $PH = \Sigma_k^p$.

Proof. Suppose that $\Sigma_k^p = \Pi_k^p$ for some $k \geq 1$. Consider a language A_{k+1} in Σ_{k+1}^p . By the characterization given above,

$$A_{k+1} = \{x \mid \exists_{|y_1| \le p(|x|)} y_1 \forall_{|y_2| \le p(|x|)} y_2 \cdots Q_{|y_{k+1}| \le p(|x|)} y_{k+1} F(x, y_1, y_2, \dots, y_{k+1}) = 1\},$$
 (1)

where p is a polynomial and F is a polynomial-time computable Boolean function. Now consider the language

$$B_k = \{(x, y_1) \mid \forall_{|y_2| \le p(|x|)} y_2 \exists_{|y_3| \le p(|x|)} y_3 \cdots Q_{|y_{k+1}| \le p(|x|)} y_{k+1} F(x, y_1, y_2, \dots, y_{k+1}) = 1\}.$$
 (2)

Starting with a \forall quantifier, there are k quantifier alternations in the expression for B_k . Thus, $B_k \in \Pi_k^p$. By the assumption $\Sigma_k^p = \Pi_k^p$, we have $B_k \in \Sigma_k^p$. Thus, B_k can also be written as

$$B_k = \{(x, y_1) \mid \exists_{|y_2| \le p'(|(x, y_1)|)} y_2 \forall_{|y_3| \le p'(|(x, y_1)|)} y_3 \cdots Q_{|y_{k+1}| \le p'(|(x, y_1)|)} y_{k+1} F'(x, y_1, y_2, \dots, y_{k+1}) = 1\},$$

where p' is a polynomial and F' is a polynomial-time computable Boolean function. Since $|y_1| \le p(|x|)$, $p'(|(x, y_1)|)$ is bounded by a polynomial p_1 of |x|. Thus, the condition " $\le p'(|(x, y_1)|)$ " can be replaced by " $\le p_1(|x|)$ ", and B_k can be re-written as

$$B_k = \{(x, y_1) \mid \exists_{|y_2| \le p_1(|x|)} y_2 \forall_{|y_3| \le p_1(|x|)} y_3 \cdots Q_{|y_{k+1}| \le p_1(|x|)} y_{k+1} F'(x, y_1, y_2, \dots, y_{k+1}) = 1 \}.$$
 (3)

From (1) and (2), we can re-write the language A_{k+1} as

$$A_{k+1} = \{ x \mid \exists_{|y_1| \le p(|x|)} y_1 \ (x, y_1) \in B_k \}. \tag{4}$$

Bringing the expression of B_k in (3) into (4), we get

$$A_{k+1} = \{x \mid \exists_{|y_1| \le p(|x|)} y_1 \exists_{|y_2| \le p_1(|x|)} y_2 \forall_{|y_3| \le p_1(|x|)} y_3 \cdots Q_{|y_{k+1}| \le p_1(|x|)} y_{k+1}$$

$$F'(x, y_1, y_2, \dots, y_{k+1}) = 1\}$$

$$= \{x \mid \exists_{|(y_1, y_2)| \le p_2(|x|)} (y_1, y_2) \forall_{|y_3| \le p_2(|x|)} y_3 \cdots Q_{|y_{k+1}| \le p_2(|x|)} y_{k+1}$$

$$F''(x, y_1, y_2, \dots, y_{k+1}) = 1\}, (5)$$

where $p_2(n) = p(n) + p_1(n)$ is a polynomial of n = |x|, and F'' is a trivial modification of F'such that $F''(x, y_1, y_2, ..., y_{k+1}) = 0$ if $|y_1| > p(|x|)$, or $|y_i| > p_1(|x|)$ for any i > 1, — otherwise $F''(x, y_1, y_2, \ldots, y_{k+1}) = F'(x, y_1, y_2, \ldots, y_{k+1})$. The Boolean function F'' is polynomial-time computable since the Boolean function F' is polynomial-time computable.

By (5), the language A_{k+1} can be written as a quantified expression with k alternations, starting with the quantifier \exists , with p_2 being a polynomial and F'' being a polynomial-time computable Boolean function. By the characterization, A_{k+1} is in Σ_k^p . Since A_{k+1} is an arbitrary language in Σ_{k+1}^p , this proves $\Sigma_{k+1}^p \subseteq \Sigma_k^p$, i.e., $\Sigma_{k+1}^p = \Sigma_k^p$.

The rest is a routine derivation. Assume inductively, $\Sigma_{k+h}^p = \Sigma_k^p$ for h > 0. This holds true

for h=1 as shown above. Now consider $\Sigma_{k+h+1}^p=\mathrm{NP}^{\Sigma_{k+h}^p}$. By induction, $\Sigma_{k+h}^p=\Sigma_k^p$, thus,

$$\Sigma_{k+h+1}^p = \mathrm{NP}^{\Sigma_k^p} = \Sigma_{k+1}^p = \Sigma_k^p,$$

and the induction goes through. This proves that $\Sigma_{k+h}^p = \Sigma_k^p$ for all h > 0, i.e., PH = Σ_k^p and the polynomial-time hierarchy PH collapses to the k-th level Σ_k^p .