
CSCE-637 Complexity Theory

Fall 2020

Instructor: Dr. Jianer Chen
Office: HRBB 338C
Phone: 845-4259
Office Hours: TR 1:30 pm–3:00 pm

Solutions to Assignment #1

1. Write a detailed description of a 1-tape Turing machine that accepts the following language:

UnEqual = {x#y | x and y are binary numbers such that x 6= y}.

Solution. This problem seems the “complement” of the problem we have discussed in class.
However, you need to be careful: an instance that is not in a valid format, such as “101#110#0”
should be a NO-instance for both this problem and the problem discussed in class. Therefore,
simply reversing the states qacc and qrej is not correct.

The purpose of this problem is to let you gain experience in constructing a Turing machine.
After this, you should realize that constructing a Turing machine is very similar to writing a
program using conventional programming languages such as a machine assembly language or C.

The transition function δ of the Turing machine M = (Q,Σ, δ, qs, qacc, qrej) is given as follows,
in which you can easily identify the state set Q and the alphabet Σ. In particular, qs is the
starting state, and qacc and qrej are the accepting and rejecting states, respectively.

(1) δ(qs, 0/1) = (q11, 0̄/1̄, R) δ(q11, 0/1) = (q11, 0/1, R)

(2) δ(q11,#) = (q12,#, R) δ(q12, 0/1) = (q12, 0/1, R)

(3) δ(q12,) = (q13, , L) δ(q13, 0/1/#) = (q13, 0/1/#, L)

(4) δ(q13, 0̄/1̄) = (q2, 0/1,−)

(5) δ(q2,#) = (q3−,#, R) δ(q3−, 0̄/1̄) = (q3−, 0̄/1̄, R)

(6) δ(q3−, 0/1) = (qacc, 0/1,−) δ(q3−,) = (qrej , ,−)

(7) δ(q2, 0) = (q20, 0̄, R) δ(q20, 0/1) = (q20, 0/1, R)

(8) δ(q20,#) = (q30,#, R) δ(q30, 0̄/1̄) = (q30, 0̄/1̄, R)

(9) δ(q30, 0) = (q4, 0̄, L) δ(q30, 1/) = (qacc, ,−)

(10) δ(q2, 1) = (q21, 1̄, R) δ(q21, 0/1) = (q21, 0/1, R)

(11) δ(q21,#) = (q31,#, R) δ(q31, 0̄/1̄) = (q31, 0̄/1̄, R)

(12) δ(q31, 1) = (q4, 1̄, L) δ(q31, 0/) = (qacc, ,−)

(13) δ(q4, 0̄/1̄) = (q4, 0̄/1̄, L) δ(q4,#) = (q5,#, L)

(14) δ(q5, 0/1) = (q5, 0/1, L) δ(q5, 0̄/1̄) = (q2, 0̄/1̄, R)

For all other cases not listed above, let δ(∗, ∗) = (qrej , ∗,−).
We use the symbols 0̄/1̄ to mark the 0/1’s, resp., that have been compared by the machine.

1

Lines (1)-(4) are used to check that the input is in a valid format x#y, where x and y are
non-empty binary numbers (if you also allow x and y to be empty, you need to add a couple
of more statements). State q11 scans the binary bits before the symbol #, while state q12 scans
the binary bits after #. Note that only when the input is in the valid format x#y, the machine
enters the state q2, which begins the comparison of the next bit of x and y.

There are three cases:
(1) The state q2 sees #, which means that all bits of x are scanned. Then the machine passes

through all scanned bits in y (using state q3−, see line (5)). If there are still unmarked bits in
y, then the machine accepts (i.e., x 6= y). Otherwise, the machine rejects. See line (6).

(2) The state q2 sees 0. Then the machine passes through all remaining bits in x (line (7))
and all marked bits in y (line (8)). If the next bit in y is also 0, then this bit does not differ x
from y, so the machine uses state q4 to go back to the next unmarked bit in x, and enters state
q2 again for comparing the next bit of x and y (first statement in line (9), and lines (13)-(14)).
If the next bit of y is 1 (or if y has no more un-compared bit), then we have identified x 6= y, so
the machine stops and accepts (the second statement in line (9)).

(3) The state q2 sees 1. This case is handled similarly as case (2) (see lines (10)-(12)).

2. A language L is decidable if there is a Turing machine that always halts and accepts L. We
say that a language L1 is reducible to another language L2 if there is a Turing machine (i.e., an
algorithm) that always halts, and on any (yes or no) instance x1 of L1, produces an instance x2
of L2 such that x1 is a yes-instance of L1 if and only if x2 is a yes-instance of L2.

Consider the following language:
Test = {(M ;x, y) | on input x, the Turing machine M outputs y}.

Show that the problem Test is undecidable. (Hint: write an algorithm that reduce Halting
problem to Test, and use the fact that Halting is undecidable.)

Solution. We show how Halting is reduced to Test. For this, we need to give an algorithm
Ared that on an input z1 = (M1, x1) that is an intance of Halting, produces an output z2 =
(M2, x2, y2) that is an instance of Test, such that z1 is a YES-instance for Halting if and only
if z2 is a YES-instance for Test.

The algorithm Ared works as follows: on input z1 = (M1, x1) that is an instance of Halt-
ing, the algorithm Ared replaces each stop-statement in M1 by the following statements: (1)
statements that erase whatever written on the output tape then write a single symbol ‘0’ on the
output tape; and then (2) a stop-statement. Let this new TM be M2. By this construction, it
is easy to see that the TM M1 halts on input x1 if and only if the TM M2 on the same input
x1 outputs a single symbol ’0’. That is, (M1, x1) is a YES-instance for Halting if and only if
(M2, x1, 0) is a YES-instance for Test.

The TM M2 can be easily constructed from the TM M1, so the algorithm Ared always halts.
Now we prove that Test is undecidable. Assume the contrary that the problem Test is

decidable. Hence, there exists an algorithm Atest that solves Test and always halts.
Now consider the following algorithm Ahalt for Halting: given an instance (M1, x1) for

Halting, the algorithm Ahalt first calls the algorithm Ared to take the input (M1, x1) and
produce an instance (M2, x1, 0) for Test, then call the algorithm Atest to decide if (M2, x1, 0)
is a YES for Test. Since both algorithms Ared and Atest always halt, the algorithm Ahalt also
always halts. Moreover, by the above discussion, (M1, x1) is a YES-instance for Halting if and
only if (M2, x1, 0) is a YES-instance for Test. As a result, we would have the algorithm Ahalt

2

that solves the Halting problem and always halts, but this contradicts the fact that Halting
is undecidable. This contradiction proves that the problem Test is undecidable.

3. Prove: if P = NP, then every non-trivial problem in P is NP-complete. A problem is
non-trivial if it has both YES-instances and NO-instances.

Solution. Let Q be any non-trivial problem in P. By definition, there exist a YES-instance xyes
and a NO-instance xno for Q.

To prove that Q is NP-complete, we need to prove (1) Q is in NP, and (2) Q is NP-hard,
i.e., every problem Q′ in NP can be polynomial-time reduced to Q.

Since Q is in P, and P = NP, so Q is in NP.
To prove that Q is NP-hard, let Q′ be any problem in NP. By the assumption P = NP,

Q′ is in P. Thus, there is a deterministic polynomial-time algorithm A′ that solves Q′. Now
consider the following reduction R from Q′ to Q:

Reduction R
Input: an instance x′ of Q′

1. Call the algorithm A′ to decide if x′ is a YES-instance of Q′;
2. If x′ is YES for Q′ then let x = xyes else let x = xno;
3. Output(x).

Clearly the output x of R is a YES-instance for Q if and only if the input x′ is a YES-instance
for Q′. Moreover, since the algorithm A′ is a deterministic polynomial-time algorithm, the Re-
duction R is also a deterministic polynomail-time algorithm. In conclusion, this shows that
Reduction R is a polynomial-time reduction from the problem Q′ to the problem Q, that is,
Q′ ≤p

m Q. Since Q′ is any problem in NP, this proves that the problem Q is NP-hard. Com-
bining this with the fact that Q is in NP, we conclude that Q is NP-complete.

4. Give a detailed proof for the following statement: if L1 ≤L L2 and L2 ≤L L3, then L1 ≤L L3.

Solution. To show L1 ≤L L3, we construct a log-space TM M1−3 that on an input x1 produces
an output x3 such that x1 is a YES-instance for L1 if and only if x3 is a YES-instance of L3.

Since L1 ≤L L2, there is a log-space TM M1−2 that on an input x1 produces an output x2
such that x1 is a YES-instance for L1 if and only if x2 is a YES-instance of L2. Similarly, since
L2 ≤L L3, there is a log-space TM M2−3 that on an input x2 produces an output x3 such that
x2 is a YES-instance for L2 if and only if x3 is a YES-instance of L3.

In principle, the TM M1−3 that reduces L1 to L3 works as follows: on an instance x1 of
L1, call the TM M1−2 to produce an instance x2 of L2, then call the TM M2−3 on input x2 to
produce an instance x3 of L3. By the definitions of the TMs M1−2 and M2−3, it is easy to see
that x1 is a YES-instance of L1 if and only if x3 is a YES-instance of L3.

Some details should be clarified here: the complexity of the log-space TM M2−3 is measured
by the length of its input x2, not x1. Thus, M2−3 on input x2 requires work-space O(log |x2|). On
the other hand, since M1−2 is a log-space TM, which, as we proved in class, runs in polynomial
time. Since in each step, M1−2 can write at most one symbol on its output tape, the length |x2|
of the output x2 of M1−2 on input x1 is bounded by a polynomial of |x1|, i.e., |x2| ≤ d · |x1|c,
where c and d are constants. Therefore, log |x2| ≤ O(log |x1|). As a result, the space taken by
the TM M2−3 on input x2 is O(log |x2|) = O(log |x1|). Thus, in the above process, both machine
M1−2 on input x1 and machine M2−3 on input x2 require work-space O(log |x1|).

3

The remaining difficulty is where we place the intermediate result x2. Note that for machine
M1−2, x2 is written on its output tape, which does not count for the work space of M1−2, while
for machine M2−3, x2 is given on its input tape, which also does not count for the work space
of M2−3. Now our proposed TM M2−3 needs both reading and writing x2 so that will require
space in its work tape. However, the length |x2| can be too large to fit in O(log |x1|) space.

We apply the following trick to bound the work space of M1−3 by O(log n) = O(log |x1|). We
let M1−3 simulate M2−3 directly (without given the entire input x2). The machine M1−3 keeps
the position H2 of the input head for the machine M2−3 (note that 1 ≤ H2 ≤ |x2| so H2 can
be given by O(log |x1|) bits, stored in the work tape of M1−3). The value of H2 can be easily
updated when the input head of M2−3 moves (by adding 1 to or subtracting 1 from H2). When
M1−3 simulates M2−3, in each step M1−3 only needs to know the H2-th symbol on the input
tape. In order to get that symbol, M1−3 switches to simulate M1−2 on input x1 (note that x1 is
on the input tape of M1−3). However, during the simulation of M1−2, M1−3 does not actually
write on the output tape. Instead, it remembers the position of the output head H1 of M1−2.
Only when M1−2 writes on the position H2, i.e., when H1 = H2, M1−3 remembers the symbol
written by M1−2 on that position. Therefore, when the entire computation of M1−2 on input
x1 is completed, the TM M1−3 knows exactly what symbol is on the position H2 on the output
tape of M1−2, which is the H2-th symbol in the input x2 of M23. Now with this input symbol,
the TM M1−3 switches back to the simulation of M2−3 on x2. Note that the total work space
required by M1−3 is the work space of M1−2 plus the work space of M2−3, which in total is
O(log |x1|). Thus, the TM M1−3 on input x1 produces the output x3, using O(log |x1|) working
space, such that x1 is a YES-instance of L1 if and only if x3 is a YES-instance of L3.

This completes the proof that L1 ≤L L3.

4

