CSCE-637 Complexity Theory ## Fall 2020 **Instructor:** Dr. Jianer Chen **Office:** HRBB 338C **Phone:** 845-4259 Office Hours: TR 1:30 pm-3:00 pm ## Solutions to Assignment #1 1. Write a detailed description of a 1-tape Turing machine that accepts the following language: UnEqual = $\{x \# y \mid x \text{ and } y \text{ are binary numbers such that } x \neq y\}$. **Solution.** This problem seems the "complement" of the problem we have discussed in class. However, you need to be careful: an instance that is not in a valid format, such as "101#110#0" should be a NO-instance for both this problem and the problem discussed in class. Therefore, simply reversing the states q_{acc} and q_{rej} is not correct. The purpose of this problem is to let you gain experience in constructing a Turing machine. After this, you should realize that constructing a Turing machine is very similar to writing a program using conventional programming languages such as a machine assembly language or C. The transition function δ of the Turing machine $M = (Q, \Sigma, \delta, q_s, q_{acc}, q_{rej})$ is given as follows, in which you can easily identify the state set Q and the alphabet Σ . In particular, q_s is the starting state, and q_{acc} and q_{rej} are the accepting and rejecting states, respectively. - (1) $\delta(q_s, 0/1) = (q_{11}, \bar{0}/\bar{1}, R) \quad \delta(q_{11}, 0/1) = (q_{11}, 0/1, R)$ - (2) $\delta(q_{11}, \#) = (q_{12}, \#, R)$ $\delta(q_{12}, 0/1) = (q_{12}, 0/1, R)$ - (3) $\delta(q_{12, -}) = (q_{13, -}, L)$ $\delta(q_{13}, 0/1/\#) = (q_{13}, 0/1/\#, L)$ - (4) $\delta(q_{13}, \bar{0}/\bar{1}) = (q_2, 0/1, -)$ - (5) $\delta(q_2, \#) = (q_{3-}, \#, R)$ $\delta(q_{3-}, \bar{0}/\bar{1}) = (q_{3-}, \bar{0}/\bar{1}, R)$ - (6) $\delta(q_{3-}, 0/1) = (q_{acc}, 0/1, -)$ $\delta(q_{3-}, -) = (q_{rej}, -, -)$ - (7) $\delta(q_2, 0) = (q_{20}, \bar{0}, R)$ $\delta(q_{20}, 0/1) = (q_{20}, 0/1, R)$ - (8) $\delta(q_{20}, \#) = (q_{30}, \#, R)$ $\delta(q_{30}, \bar{0}/\bar{1}) = (q_{30}, \bar{0}/\bar{1}, R)$ - (9) $\delta(q_{30}, 0) = (q_4, \bar{0}, L)$ $\delta(q_{30}, 1/_{-}) = (q_{acc}, -, -)$ - (10) $\delta(q_2, 1) = (q_{21}, \bar{1}, R)$ $\delta(q_{21}, 0/1) = (q_{21}, 0/1, R)$ - (11) $\delta(q_{21}, \#) = (q_{31}, \#, R)$ $\delta(q_{31}, \bar{0}/\bar{1}) = (q_{31}, \bar{0}/\bar{1}, R)$ - (12) $\delta(q_{31}, 1) = (q_4, \bar{1}, L)$ $\delta(q_{31}, 0/) = (q_{acc}, -, -)$ - (13) $\delta(q_4, \bar{0}/\bar{1}) = (q_4, \bar{0}/\bar{1}, L) \quad \delta(q_4, \#) = (q_5, \#, L)$ - (14) $\delta(q_5, 0/1) = (q_5, 0/1, L) \quad \delta(q_5, \bar{0}/\bar{1}) = (q_2, \bar{0}/\bar{1}, R)$ For all other cases not listed above, let $\delta(*,*) = (q_{rej},*,-)$. We use the symbols 0/1 to mark the 0/1's, resp., that have been compared by the machine. Lines (1)-(4) are used to check that the input is in a valid format x # y, where x and y are non-empty binary numbers (if you also allow x and y to be empty, you need to add a couple of more statements). State q_{11} scans the binary bits before the symbol #, while state q_{12} scans the binary bits after #. Note that only when the input is in the valid format x # y, the machine enters the state q_2 , which begins the comparison of the next bit of x and y. There are three cases: - (1) The state q_2 sees #, which means that all bits of x are scanned. Then the machine passes through all scanned bits in y (using state q_{3-} , see line (5)). If there are still unmarked bits in y, then the machine accepts (i.e., $x \neq y$). Otherwise, the machine rejects. See line (6). - (2) The state q_2 sees 0. Then the machine passes through all remaining bits in x (line (7)) and all marked bits in y (line (8)). If the next bit in y is also 0, then this bit does not differ x from y, so the machine uses state q_4 to go back to the next unmarked bit in x, and enters state q_2 again for comparing the next bit of x and y (first statement in line (9), and lines (13)-(14)). If the next bit of y is 1 (or if y has no more un-compared bit), then we have identified $x \neq y$, so the machine stops and accepts (the second statement in line (9)). - (3) The state q_2 sees 1. This case is handled similarly as case (2) (see lines (10)-(12)). - **2.** A language L is decidable if there is a Turing machine that always halts and accepts L. We say that a language L_1 is reducible to another language L_2 if there is a Turing machine (i.e., an algorithm) that always halts, and on any (yes or no) instance x_1 of L_1 , produces an instance x_2 of L_2 such that x_1 is a yes-instance of L_1 if and only if x_2 is a yes-instance of L_2 . Consider the following language: TEST = $\{(M; x, y) \mid \text{ on input } x, \text{ the Turing machine } M \text{ outputs } y\}.$ Show that the problem Test is undecidable. (*Hint:* write an algorithm that reduce Halting problem to Test, and use the fact that Halting is undecidable.) **Solution.** We show how HALTING is reduced to TEST. For this, we need to give an algorithm \mathcal{A}_{red} that on an input $z_1 = (M_1, x_1)$ that is an intance of HALTING, produces an output $z_2 = (M_2, x_2, y_2)$ that is an instance of TEST, such that z_1 is a YES-instance for HALTING if and only if z_2 is a YES-instance for TEST. The algorithm \mathcal{A}_{red} works as follows: on input $z_1 = (M_1, x_1)$ that is an instance of HALT-ING, the algorithm \mathcal{A}_{red} replaces each stop-statement in M_1 by the following statements: (1) statements that erase whatever written on the output tape then write a single symbol '0' on the output tape; and then (2) a stop-statement. Let this new TM be M_2 . By this construction, it is easy to see that the TM M_1 halts on input x_1 if and only if the TM M_2 on the same input x_1 outputs a single symbol '0'. That is, (M_1, x_1) is a YES-instance for HALTING if and only if $(M_2, x_1, 0)$ is a YES-instance for TEST. The TM M_2 can be easily constructed from the TM M_1 , so the algorithm \mathcal{A}_{red} always halts. Now we prove that TEST is undecidable. Assume the contrary that the problem TEST is decidable. Hence, there exists an algorithm \mathcal{A}_{test} that solves TEST and always halts. Now consider the following algorithm \mathcal{A}_{halt} for Halting: given an instance (M_1, x_1) for Halting, the algorithm \mathcal{A}_{halt} first calls the algorithm \mathcal{A}_{red} to take the input (M_1, x_1) and produce an instance $(M_2, x_1, 0)$ for Test, then call the algorithm \mathcal{A}_{test} to decide if $(M_2, x_1, 0)$ is a YES for Test. Since both algorithms \mathcal{A}_{red} and \mathcal{A}_{test} always halt, the algorithm \mathcal{A}_{halt} also always halts. Moreover, by the above discussion, (M_1, x_1) is a YES-instance for Halting if and only if $(M_2, x_1, 0)$ is a YES-instance for Test. As a result, we would have the algorithm \mathcal{A}_{halt} that solves the Halting problem and always halts, but this contradicts the fact that Halting is undecidable. This contradiction proves that the problem Test is undecidable. \Box **3.** Prove: if P = NP, then every non-trivial problem in P is NP-complete. A problem is non-trivial if it has both YES-instances and NO-instances. **Solution.** Let Q be any non-trivial problem in \mathbf{P} . By definition, there exist a YES-instance x_{yes} and a NO-instance x_{no} for Q. To prove that Q is **NP**-complete, we need to prove (1) Q is in **NP**, and (2) Q is **NP**-hard, i.e., every problem Q' in **NP** can be polynomial-time reduced to Q. Since Q is in \mathbf{P} , and $\mathbf{P} = \mathbf{NP}$, so Q is in \mathbf{NP} . To prove that Q is **NP**-hard, let Q' be any problem in **NP**. By the assumption P = NP, Q' is in **P**. Thus, there is a deterministic polynomial-time algorithm A' that solves Q'. Now consider the following reduction R from Q' to Q: ## Reduction R Input: an instance x' of Q' - 1. Call the algorithm A' to decide if x' is a YES-instance of Q'; - 2. If x' is YES for Q' then let $x = x_{yes}$ else let $x = x_{no}$; - 3. Output(x). Clearly the output x of R is a YES-instance for Q if and only if the input x' is a YES-instance for Q'. Moreover, since the algorithm A' is a deterministic polynomial-time algorithm, the Reduction R is also a deterministic polynomial-time algorithm. In conclusion, this shows that Reduction R is a polynomial-time reduction from the problem Q' to the problem Q, that is, $Q' \leq_m^p Q$. Since Q' is any problem in \mathbf{NP} , this proves that the problem Q is \mathbf{NP} -hard. Combining this with the fact that Q is in \mathbf{NP} , we conclude that Q is \mathbf{NP} -complete. **4.** Give a detailed proof for the following statement: if $L_1 \leq_L L_2$ and $L_2 \leq_L L_3$, then $L_1 \leq_L L_3$. **Solution.** To show $L_1 \leq_L L_3$, we construct a log-space TM M_{1-3} that on an input x_1 produces an output x_3 such that x_1 is a YES-instance for L_1 if and only if x_3 is a YES-instance of L_3 . Since $L_1 \leq_L L_2$, there is a log-space TM M_{1-2} that on an input x_1 produces an output x_2 such that x_1 is a YES-instance for L_1 if and only if x_2 is a YES-instance of L_2 . Similarly, since $L_2 \leq_L L_3$, there is a log-space TM M_{2-3} that on an input x_2 produces an output x_3 such that x_2 is a YES-instance for L_2 if and only if x_3 is a YES-instance of L_3 . In principle, the TM M_{1-3} that reduces L_1 to L_3 works as follows: on an instance x_1 of L_1 , call the TM M_{1-2} to produce an instance x_2 of L_2 , then call the TM M_{2-3} on input x_2 to produce an instance x_3 of L_3 . By the definitions of the TMs M_{1-2} and M_{2-3} , it is easy to see that x_1 is a YES-instance of L_1 if and only if x_3 is a YES-instance of L_3 . Some details should be clarified here: the complexity of the log-space TM M_{2-3} is measured by the length of its input x_2 , not x_1 . Thus, M_{2-3} on input x_2 requires work-space $O(\log |x_2|)$. On the other hand, since M_{1-2} is a log-space TM, which, as we proved in class, runs in polynomial time. Since in each step, M_{1-2} can write at most one symbol on its output tape, the length $|x_2|$ of the output x_2 of M_{1-2} on input x_1 is bounded by a polynomial of $|x_1|$, i.e., $|x_2| \leq d \cdot |x_1|^c$, where c and d are constants. Therefore, $\log |x_2| \leq O(\log |x_1|)$. As a result, the space taken by the TM M_{2-3} on input x_2 is $O(\log |x_2|) = O(\log |x_1|)$. Thus, in the above process, both machine M_{1-2} on input x_1 and machine M_{2-3} on input x_2 require work-space $O(\log |x_1|)$. The remaining difficulty is where we place the intermediate result x_2 . Note that for machine M_{1-2} , x_2 is written on its output tape, which does not count for the work space of M_{1-2} , while for machine M_{2-3} , x_2 is given on its input tape, which also does not count for the work space of M_{2-3} . Now our proposed TM M_{2-3} needs both reading and writing x_2 so that will require space in its work tape. However, the length $|x_2|$ can be too large to fit in $O(\log |x_1|)$ space. We apply the following trick to bound the work space of M_{1-3} by $O(\log n) = O(\log |x_1|)$. We let M_{1-3} simulate M_{2-3} directly (without given the entire input x_2). The machine M_{1-3} keeps the position H_2 of the input head for the machine M_{2-3} (note that $1 \leq H_2 \leq |x_2|$ so H_2 can be given by $O(\log |x_1|)$ bits, stored in the work tape of M_{1-3}). The value of H_2 can be easily updated when the input head of M_{2-3} moves (by adding 1 to or subtracting 1 from H_2). When M_{1-3} simulates M_{2-3} , in each step M_{1-3} only needs to know the H_2 -th symbol on the input tape. In order to get that symbol, M_{1-3} switches to simulate M_{1-2} on input x_1 (note that x_1 is on the input tape of M_{1-3}). However, during the simulation of M_{1-2} , M_{1-3} does not actually write on the output tape. Instead, it remembers the position of the output head H_1 of M_{1-2} . Only when M_{1-2} writes on the position H_2 , i.e., when $H_1 = H_2$, M_{1-3} remembers the symbol written by M_{1-2} on that position. Therefore, when the entire computation of M_{1-2} on input x_1 is completed, the TM M_{1-3} knows exactly what symbol is on the position H_2 on the output tape of M_{1-2} , which is the H_2 -th symbol in the input x_2 of M_{23} . Now with this input symbol, the TM M_{1-3} switches back to the simulation of M_{2-3} on x_2 . Note that the total work space required by M_{1-3} is the work space of M_{1-2} plus the work space of M_{2-3} , which in total is $O(\log |x_1|)$. Thus, the TM M_{1-3} on input x_1 produces the output x_3 , using $O(\log |x_1|)$ working space, such that x_1 is a YES-instance of L_1 if and only if x_3 is a YES-instance of L_3 . This completes the proof that $L_1 \leq_L L_3$.