
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50 pm - 5:00 pm Office Hours: T,TR 2:00 pm - 3:00 pm

Solutions to Assignment # 6

1. A vertex cover in an undirected graph G is a set C of vertices in G such that every edge in
G has at least one end in C. Consider the following two versions of the Vertex-Cover problem:

VC-D: Given a graph G and an integer k, decide whether G contains a vertex cover
of at most k vertices.

VC-O: Given a graph G, construct a minimum vertex cover for G

Prove: VC-D is in P if and only if VC-O is in P.

Solutions. Suppose that the VC-O problem is in P, i.e., is solvable in polynomial time. Thus,
there is a polynomial time algorithm AO that solves the VC-O problem. We construct a polyno-
mial time algorithm AD for the VC-D problem as follows: given an instance (G, k) of the VC-D
problem, run AO on G to obtain an minimum vertex cover C in G, then return “yes” if and
only if |C| ≤ k. The algorithm AD is correct because the graph G contains a vertex cover of at
most k vertices if and only if the minimum vertex cover of G contains no more than k vertices.
Since the algorithm AO runs in polynomial time, the algorithm AD runs in polynomial time.
Thus, the problem VC-D is solvable in polynomial time, i.e., it is in P.

Conversely, suppose that the VC-D problem is in P so there is a polynomial time algorithm
A′

D for the VC-D problem. We can construct a polynomial time algorithm A′
O for the VC-O

problem, which is given in Figure 1
By our assumption, the algorithm A′

D runs in polynomial time. Because the algorithm A′
O

calls the algorithm A′
D at most n + n2 times (at most n times in step 1 and at most n times in

step 3.1.1 for each i), the algorithm A′
O also runs in polynomial time.

To see the correctness of the algorithm A′
O, first note that step 1 find the smallest integer i0

such that A′
D(G, i0) = yes. Thus, after step 1, i = i0 is size of a minimum vertex cover of the

graph G. In general, for each execution of step 3.1, we know that the minimum vertex cover
is of size i, and we are looking for a vertex cover of i vertices in the graph G. In particular,
if A′

D(G − v, i − 1) = yes, then the graph G − v has a vertex cover of size i − 1, which, plus
the vertex v, gives a minimum vertex cover of i vertices in the graph G. This means that the
vertex v is in a minimum vertex cover of the graph G. As a result, if this is true at step 3.1.1,
then we can include v in the minimum vertex cover C (at step 3.1.2), then recursively look for
a (minimum) vertex cover of i− 1 vertices in the graph G− v. Step 3.1.2 of the algorithm thus
correctly updates the graph G and the value i. In particular, at end of step 3, the set C contains

1

Algorithm A′
O

Input: a graph G
Output: a minimum vertex cover C in G

1. for (i = 0; i ≤ n; i++) do if (A′
D(G, i) = yes) break;

2. C = ∅;
3. while (i > 0)

3.1 for (each vertex v in G) do

3.1.1 if (A′
D(G− v, i− 1) = yes)

3.1.2 C = C ∪ {v}; G = G− v; i = i− 1;

3.1.3 break; \\ break the for-loop

4. return(C).

Figure 1: The algorithm A′
O for VC-O

a vertex cover of i0 vertices for the graph G, where i0 is the value i after step 1, i.e., i0 is the
size of a minimum vertex cover of the input graph G. In conclusion, the algorithm A′

O runs in
polynomial time and returns a minimum vertex cover C of the input graph G (at step 4). In
other words, the VC-O problem is solvable in polynomial time, i.e., it is in P.

This completes the proof of the question.

2. Using the fact that the Independent Set problem is NP-complete, prove that the following
problem is NP-complete:

Clique: Given a graph G and an integer k, is there a set C of k vertices in G such
that for every pair v and w of vertices in C, v and w are adjacent in G?

Solutions. We first show that Clique is in NP. An instance of the Clique problem takes the
form (G, k), where G is a graph and k is an integer. Consider the algorithm given in Figure 2.

For a Yes-instance x = (G, k) of Clique, i.e., if there is a set C of k vertices in G in
which every pair of vertices are adjacent, then when the string y is this set C, the algorithm
VerifyClique(x, y) will pass the tests in steps 1-2, and return in step 3 with an answer ”Yes.”
On the other hand, if x = (G, k) is a No-instance of Clique, i.e., if there is no set of k vertices
in which all vertices are pairwise adjacent, then the algorithm VerifyClique(x, y) for any y
will either return in step 1 with a ”No” answer (if y does not encode a set of k vertices in the
graph G) or return in step 2 with a ”No” answer (since the graph G does not have k pairwise
adjacent vetices). That is, on a No-instance x of Clique, the algorithm VerifyClique(x, y)
returns ”No” for all y. Finally, the algorithm VerifyClique(x, y) obviously runs in time O(|x|2)
(assuming the graph G is given in an adjacency matrix). By the definition of problems in NP,
the algorithm VerifyClique shows that the problem Clique is in NP.

Now, we show that the Independent Set problem is polynomial-time reducible to the
Clique problem, which will give the NP-hardness of the Clique problem. This reduction uses
the notion of “complement graphs”. Given an undirected graph G = (V,E), the complement
graph G of G is defined as G = (V,E), which has same set V of vertices, and the edge set E is
defined as E = {[u, v] | u, v ∈ V, u 6= v, and [u, v] /∈ E}.

The reduction algorithm takes as input an instance (G, k) of Independent Set, constructs
the complement graph G of G, then outputs (G, k) as an instance of Clique. The algorithm

2

Algorithm. VerifyClique(x = (G, k), y)
Input: x = (G, k), where G is a graph and k is an integer k, and a string y
Output: verify if y is a solution to the Clique instance x = (G, k)

1. if (y is not a set of k vertices in G) return(”No”);

2. if (any two vertices in y are not adjacent) return(”No”);

3. return(”Yes”).

Figure 2: Clique is in NP

obviously runs in polynomial-time (more precisely, in time O(n2)). Moreover, it is easy to see
that the graph G has a set C of k vertices in which no two are adjacent if and only if the same
set C of k vertices in the complement graph G has all the k vertices pairwise adjacent. That is,
(G, k) is a Yes-instance of Independent Set if and only if (G, k) is a Yes-instance of Clique.
Thus, Independent Set ≤p

m Clique. Since the Independent Set problem is NP-complete
(thus, is NP-hard), this reduction shows that the Clique problem is NP-hard.

Summarizing the discussions, we conclude that the Clique problem is NP-complete.

3. Using the fact that the Partition problem is NP-complete, prove that the following
problem is NP-complete:

Knapsack: given n items of sizes s1, s2, . . ., sn and values v1, v2, . . ., vn, resectively,
a knapsack of size S, and a value objective V , can we select some of these items to
fit into the knapsack so that the total value of the selected items is at least V ?

Solutions. We first show that Knapsack is in NP. An instance of the Knapsack problem is a
tuple of 2n + 2 integers x = (s1, v1, s2, v2, . . . , sn, vn;S;V). Consider the algorithm in Figure 3.

For a Yes-instance x = (s1, v1, . . . , sn, vn;S;V) of Knapsack, i.e., if there is a set A of items
(note that the items are given by the integers {1, 2, . . . , n}. Thus, a set A of items is a subset of
{1, 2, . . . , n}), which can fit into the knapsack (i.e.,

∑
i∈A si ≤ S) with the value at least V (i.e.,∑

i∈A vi ≥ V), then when the string y is this item set A, the algorithm VerifyKnapsack(x, y)
will pass the tests in steps 1-2, and return in step 3 with an answer ”Yes.” On the other hand,
if x = (s1, v1, . . . , sn, vn;S;V) is a No-instance of Knapsack, i.e., if there is no item set A that
satisfies both

∑
i∈A si ≤ S and

∑
i∈A vi ≥ V , then the algorithm VerifyKnapsack(x, y) for any

y will either return in step 1 with a ”No” answer (if y does not encode a set of items) or return
in step 2 with a ”No” answer (since there is no item set A that satisfies both

∑
i∈A si ≤ S and∑

i∈A vi ≥ V). That is, on a No-instance x of Knapsack, the algorithm VerifyKnapsack(x, y)
returns ”No” for all y. Finally, the algorithm VerifyKnapsack(x, y) obviously runs in time
O(|x|) (for first checking if y is a subset of {1, 2, . . . , n}, then verifying the conditions for the
size sum and value sum). By the definition of problems in NP, the algorithm VerifyKnapsack
shows that the problem Knapsack is in NP.

Now, we show that the Partition problem is polynomial-time reducible to the Knapsack
problem, which will give theNP-hardness of Knapsack. The reduction algorithm takes as input
an instance x = (a1, a2, . . . , an) of Partition, and outputs a tuple y = (s1, v1, . . . , sn, vn;S;V)
as an instance of Knapsack, where si = vi = ai for 1 ≤ i ≤ n, and S = V = (

∑n
i=1 ai)/2. The

algorithm obviously runs in polynomial-time (more precisely, in time O(n)).

3

Algorithm. VerifyKnapsack(x = (s1, v1, . . . , sn, vn;S;V), y)
Input: a Knapsack instance x = (s1, v1, . . . , sn, vn;S;V), and a string y
Output: verify if y is a solution to the Knapsack instance x

1. if (y is not a subset of {1, 2, . . . , n}) return(”No”);

2. if (
∑

i∈y si > S or
∑

i∈y vi < V) return(”No”);

3. return(”Yes”).

Figure 3: Knapsack is in NP

We show that x is a Yes-instance of Partition if and only if y is a Yes-instance of Knapsack.
Suppose that x = (a1, a2, . . . , an) is a Yes-instance of Partition. Then, we can divide the

set {1, 2, . . . , n} into two disjoint subsets L and R such that
∑

l∈L al =
∑

r∈R ar. In this case, we
must have

∑
l∈L al =

∑
r∈R ar = (

∑n
i=1 ai)/2. Now consider the item subset L (again a subset of

items is given by a subset of {1, 2, . . . , n}). Then we have
∑

l∈L sl =
∑

l∈L al = (
∑n

i=1 ai)/2 = S
and

∑
l∈L vl =

∑
l∈L al = (

∑n
i=1 ai)/2 = V . Therefor, L is a item set that satisfies both∑

l∈L sl ≤ S and
∑

l∈L vl ≥ V , i.e., the instance y = (s1, v1, . . . , sn, vn;S;V) is a Yes-instance of
the Knapsack problem.

On the other hand, if y = (s1, v1, . . . , sn, vn;S;V) is a Yes-instance of Knapsack, i.e., if
there is an item set L that satisfies both

∑
t∈L st ≤ S and

∑
t∈L vt ≥ V , then since st = vt = at

for all t and S = V = (
∑n

i=1 ai)/2, we must have

(

n∑
i=1

ai)/2 = V ≤
∑
l∈L

vl =
∑
l∈L

al =
∑
l∈L

sl ≤ S = (

n∑
i=1

ai)/2.

Thus, the subset L of {1, 2, . . . , n} satisfies
∑

l∈L al = (
∑n

i=1 ai)/2. If we let R = {1, 2, . . . , n}−L,
then obviously we also have

∑
r∈R ar =

∑n
i=1 ai −

∑
l∈L al = (

∑n
i=1 ai)/2. That is, the set of

integers {a1, a2, . . . , an} can be divided into two subsets L and R that have the same sum. This
shows that x = (a1, a2, . . . , an) is a Yes-instance of Partition.

This completes the proof that Partition is polynomial-time reducible to Knapsack. Since
Partition is NP-complete (thus, is NP-hard), the problem Knapsack is NP-hard.

Summarizing the discussions, we conclude that the Knapsack problem is NP-complete.

4

