CSCE 629-601 Analysis of Algorithms

Fall 2022
Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse. tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50 pm - 5:00 pm Office Hours: T, TR 2:00 pm - 3:00 pm

Solutions to Assignment # 5

1. A vertex v in an undirected graph G is an odd cycle transversal if every cycle of odd length
in G contains the vertex v. Develop a linear-time algorithm for the following problem: given a
graph G and a vertex v in G, decide if v is an odd cycle transversal.

Solutions. A graph is bipartite if and only if it does not contain an odd cycle. We have shown
in class that using DFS, we can decide in linear-time whether a given graph is bipartite.

To solve the problem given in the question on a graph G, we first decide in linear time
whether G is bipartite. If GG is bipartite, then v is not an odd cycle transversal because G does
not contain any odd cycles. Otherwise, remove v from the graph G to obtain a graph G’, which
can be done in linear time. Now decide in linear-time whether the graph G’ is bipartite. If G’
is bipartite, then the vertex v is an odd cycle transversal in the graph G; otherwise, v is not
because there are odd cycles in the graph G’ that does not contain the vertex v. Combining the
above steps, we have a linear-time algorithm that solves the problem given in the question.

2. Suppose that each class C; has an enrollment r; while each classroom R; has a capacity c;.
A classroom Rj; is “feasible” for a class C; if ¢;/2 < r; < ¢;. Develop an efficient algorithm that,
on a set of classes (with enrollments given) and a set of classrooms (with capacities given), make
a feasible assignment of the classes to the classrooms such that as many classes as possible can
get held starting at 9am on Monday.

Solutions. Let C' = {C1,Cy,...,Cp} be the given set of m classes, where each class C; is
associated with an enrollment r;, and let R = {R1, Ra, ..., R} be the given set of n classrooms,
where each classroom R; is associated with a capacity c;.

First, we construct a bipartite graph G = (U,V, E) as follows: let U = {uj,ug,...,un}
and V' = {vi,v2,...,v,}, where for each i, u; corresponds to the class C;, and for each j, v;
corresponds to the classroom R;. There is an edge between u; and v; if ¢;/2 < r; < ¢;. Thus,
the graph G has at most mn edges, and constructing the graph G takes time O(mn).

Now use the algorithm discussed in class to construct the maximum matching M in the
graph G. Obviously, M is the desired optimal feasible assignment.

The maximum matching algorithm runs in time O(n;m;) on a graph of ny vertices and my
edges. Since the graph G has ny = |U| + |V| = n + m vertices and m; < mn edges, the above
algorithm solving the problem runs in time O(nymi) = O(n?m + nm?).

3. Suppose that in addition to edge capacities, a flow network also has vertex capacities, i.e.,
each vertex v has a limit ¢(v) on how much flow can pass through v. Show how to transform a
flow network G = (V, E) with vertex capacities into a flow network G’ = (V’, E’) without vertex
capacities, such that a maximum flow in G’ has the same value as a maximum flow in G.

Solutions. Let G = (V, E) be a flow network with vertex capacities (in addition to edge capaci-
ties). Let s and t be the source and sink in the flow network G, respectively. We construct an
“equivalent” flow network G’ = (V’/, E’) without vertex capacities such that a maximum flow in
G’ has the same value as that of a maximum flow in G.

The flow network G’ is constructed from the flow network G, as follows. For every vertex v
with vertex capacity c¢(v) in G, “split” v into two vertices v; and ve, and add an edge [v1, v2] with
edge capacity ¢(v1,v2) = ¢(v). For every edge [u, v] in G, where the vertex u is split into [u1, us]
and v is split into [v1, ve], replace [u,v] with the edge [uz,v1] with capacity ¢ (ug,v1) = ¢(u,v).
This gives the flow network G’ = (V’, E’) without vertex capacities. The source of G’ is s; while
the sink of G is ta. It is easy to see that |E’| = |V| + |E| and |V'| = 2|V].

Let f be a flow from s to ¢ in the flow network G. We create a flow f’ in the flow network
G’ as follows: for each edge [u,v] in G, f'(u2,v1) = f(u,v), and for each vertex v # s in G, let
f'(v1,v2) = Xp jep f(u,v). Moreover, let f'(s1,52) = X yjep f(5,u). It is easy to verify that
/' is a valid flow in G’ and its value is equal to that of the flow f in G.

Conversely, given a flow f’ in the flow network G’, we can construct a flow f in the flow
network G as follows: for each edge [u,v] in G, let f(u,v) = f’(ug,v1). Since f’ satisfies the
capacity constraint, in particular the capacity constraints on the edges [v1, v2] where v; and vo
correspond to a vertex v in G, f satisfies both edge capacity constraints and the vertex capacity
constraints in G. Thus, f is a valid flow in the flow network G with the same value as f’.

Therefore, there is a one-to-one correspondence between flows in G' and flows in G’ where
the corresponding flows have the same value. Thus, the maximum flow value in G equals the
maximum flow value in G’.

4. (Textbook, page 731, Question 26.2-10) Show how to find a maximum flow in a flow network
G = (V, E) by a sequence of at most |F| augmenting paths. (Hint: determine the paths after
finding the maximum flow.)

Solutions. First, find a maximum flow f in G. There are no more than |E| edges with flow value
larger than 0. Let P = (). Repeat the following procedures until f(u,v) = 0 for all edges [u,v]:

1. construct a subgraph G’ = (V/, E’) of G that contains the edges [u,v] € E with f(u,v) > 0;
2. select an edge [u/,v'] in G’ with the minimum flow value f(u’,v"). There must be an s-t path
in G’ that contains [u/,v'] because there is a positive flow going through the edge [u’,v'[;
3. let P be a path from s to t in G’ that contains the edge [u/,v']. Since [v/,v'] has the minimum
f value, we can push a flow along the path P that saturates the edge [u/,v]. Thus, on each
edge [x,y] on the path P, we push a flow of value f(u/,v") so that the remaining flow value on
the edge [z,y] becomes f(z,y) — f(u/,v"). The path P is an augmenting path. Add P into P.
In particular, the flow value along the edge [u/,v'] becomes 0.

In each iteration, at least one edge has its flow value become 0. Since there are at most |E)|
edges whose flow value are greater than 0, the number of iterations is |E|. It follows that P
contains at most |E| augmenting paths.

