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Solutions to Assignment # 5

1. A vertex v in an undirected graph G is an odd cycle transversal if every cycle of odd length
in G contains the vertex v. Develop a linear-time algorithm for the following problem: given a
graph G and a vertex v in G, decide if v is an odd cycle transversal.

Solutions. A graph is bipartite if and only if it does not contain an odd cycle. We have shown
in class that using DFS, we can decide in linear-time whether a given graph is bipartite.

To solve the problem given in the question on a graph G, we first decide in linear time
whether G is bipartite. If G is bipartite, then v is not an odd cycle transversal because G does
not contain any odd cycles. Otherwise, remove v from the graph G to obtain a graph G′, which
can be done in linear time. Now decide in linear-time whether the graph G′ is bipartite. If G′

is bipartite, then the vertex v is an odd cycle transversal in the graph G; otherwise, v is not
because there are odd cycles in the graph G′ that does not contain the vertex v. Combining the
above steps, we have a linear-time algorithm that solves the problem given in the question.

2. Suppose that each class Ci has an enrollment ri while each classroom Rj has a capacity cj .
A classroom Rj is “feasible” for a class Ci if cj/2 ≤ ri ≤ cj . Develop an efficient algorithm that,
on a set of classes (with enrollments given) and a set of classrooms (with capacities given), make
a feasible assignment of the classes to the classrooms such that as many classes as possible can
get held starting at 9am on Monday.

Solutions. Let C = {C1, C2, . . . , Cm} be the given set of m classes, where each class Ci is
associated with an enrollment ri, and let R = {R1, R2, . . . , Rn} be the given set of n classrooms,
where each classroom Rj is associated with a capacity cj .

First, we construct a bipartite graph G = (U, V,E) as follows: let U = {u1, u2, . . . , um}
and V = {v1, v2, . . . , vn}, where for each i, ui corresponds to the class Ci, and for each j, vj
corresponds to the classroom Rj . There is an edge between ui and vj if cj/2 ≤ ri ≤ cj . Thus,
the graph G has at most mn edges, and constructing the graph G takes time O(mn).

Now use the algorithm discussed in class to construct the maximum matching M in the
graph G. Obviously, M is the desired optimal feasible assignment.

The maximum matching algorithm runs in time O(n1m1) on a graph of n1 vertices and m1

edges. Since the graph G has n1 = |U | + |V | = n + m vertices and m1 ≤ mn edges, the above
algorithm solving the problem runs in time O(n1m1) = O(n2m + nm2).
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3. Suppose that in addition to edge capacities, a flow network also has vertex capacities, i.e.,
each vertex v has a limit c(v) on how much flow can pass through v. Show how to transform a
flow network G = (V,E) with vertex capacities into a flow network G′ = (V ′, E′) without vertex
capacities, such that a maximum flow in G′ has the same value as a maximum flow in G.

Solutions. Let G = (V,E) be a flow network with vertex capacities (in addition to edge capaci-
ties). Let s and t be the source and sink in the flow network G, respectively. We construct an
“equivalent” flow network G′ = (V ′, E′) without vertex capacities such that a maximum flow in
G′ has the same value as that of a maximum flow in G.

The flow network G′ is constructed from the flow network G, as follows. For every vertex v
with vertex capacity c(v) in G, “split” v into two vertices v1 and v2, and add an edge [v1, v2] with
edge capacity c′(v1, v2) = c(v). For every edge [u, v] in G, where the vertex u is split into [u1, u2]
and v is split into [v1, v2], replace [u, v] with the edge [u2, v1] with capacity c′(u2, v1) = c(u, v).
This gives the flow network G′ = (V ′, E′) without vertex capacities. The source of G′ is s1 while
the sink of G′ is t2. It is easy to see that |E′| = |V |+ |E| and |V ′| = 2|V |.

Let f be a flow from s to t in the flow network G. We create a flow f ′ in the flow network
G′ as follows: for each edge [u, v] in G, f ′(u2, v1) = f(u, v), and for each vertex v 6= s in G, let
f ′(v1, v2) =

∑
[u,v]∈E f(u, v). Moreover, let f ′(s1, s2) =

∑
[s,u]∈E f(s, u). It is easy to verify that

f ′ is a valid flow in G′ and its value is equal to that of the flow f in G.
Conversely, given a flow f ′ in the flow network G′, we can construct a flow f in the flow

network G as follows: for each edge [u, v] in G, let f(u, v) = f ′(u2, v1). Since f ′ satisfies the
capacity constraint, in particular the capacity constraints on the edges [v1, v2] where v1 and v2
correspond to a vertex v in G, f satisfies both edge capacity constraints and the vertex capacity
constraints in G. Thus, f is a valid flow in the flow network G with the same value as f ′.

Therefore, there is a one-to-one correspondence between flows in G and flows in G′ where
the corresponding flows have the same value. Thus, the maximum flow value in G equals the
maximum flow value in G′.

4. (Textbook, page 731, Question 26.2-10) Show how to find a maximum flow in a flow network
G = (V,E) by a sequence of at most |E| augmenting paths. (Hint: determine the paths after
finding the maximum flow.)

Solutions. First, find a maximum flow f in G. There are no more than |E| edges with flow value
larger than 0. Let P = ∅. Repeat the following procedures until f(u, v) = 0 for all edges [u, v]:

1. construct a subgraph G′ = (V ′, E′) of G that contains the edges [u, v] ∈ E with f(u, v) > 0;
2. select an edge [u′, v′] in G′ with the minimum flow value f(u′, v′). There must be an s-t path
in G′ that contains [u′, v′] because there is a positive flow going through the edge [u′, v′];
3. let P be a path from s to t in G′ that contains the edge [u′, v′]. Since [u′, v′] has the minimum
f value, we can push a flow along the path P that saturates the edge [u′, v′]. Thus, on each
edge [x, y] on the path P , we push a flow of value f(u′, v′) so that the remaining flow value on
the edge [x, y] becomes f(x, y) − f(u′, v′). The path P is an augmenting path. Add P into P.
In particular, the flow value along the edge [u′, v′] becomes 0.

In each iteration, at least one edge has its flow value become 0. Since there are at most |E|
edges whose flow value are greater than 0, the number of iterations is |E|. It follows that P
contains at most |E| augmenting paths.
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