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Solutions to Assignment #4

1. Suppose that we have a sequence of MakeSet-Find-Union operations in which no Find appears
before any Union. What is the computational time for this sequence?

Solutions. Suppose that the length of the sequence of MakeSet-Find-Union operations is m and
that the number of elements in the set S is n. We claim that the computational time for this
sequence is O(m + n).

Each of the MakeSet and Union operations takes constant time. Thus, the total time for all
MakeSet and Union operations is bounded by O(m).

For the Find operations, we follow the same idea as presented in class, but define bound-
ary/internal nodes differently. A node on a Find-path in a tree T is a boundary node if the node
is a child of the root of T , and is an internal node if it is not a child of the root. Since there are
at most m Find operations in the sequence, the total number of boundary nodes is bounded by
m. Moreover, we claim that for any element a in the set S, there is at most one internal node
labeled a. To see this, note that if a node v labeled a is an internal node on a Find-path, then
the node v will become a child of the root r of the tree after the Find operation. Since no Union
appears after any Find, the tree root r remains as a tree root for the rest of the computation,
thus, the node v labeled a will remian as a child of the root r and cannot be an internal node.
As a consequence, there are at most n internal nodes, each is labeled by a different element in
the set S. Therefore, the total number of boundary nodes and internal nodes, which is equal to
the sum of the lengths of Find-paths in the sequence, is bounded by m + n. As shown in class,
this means that the total time spent on all the Find operations in the sequence is bounded by
O(m+n). Thus, the total computational time for the sequence is also bounded by O(m+n).

2. Based on the Bellman-Ford algorithm, develop an algorithm of time O(nm) that on a
weighted and directed graph G and vertices s and t, either constructs a shortest path from s to
t, or reports that t is not reachable from s, or reports that the shortest path problem from s to
t is meaningless.

Solutions. This question requires a good understanding of the correctness proof for the Bellman-
Ford algorithm. Let dist[n] be the array computed by the Bellman-Ford algorithm for the vertex
pair (s, t). As given in class for the proof of the correctness of the Bellman-Ford algorithm, for
any vertex v, if there is no path from s to v that passes through a negative cycle, then dist[v]
is equal to the length of the shortest paths from s to v. Therefore, for any edge [v, w], if we
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have dist[w] > dist[v]+ wt(v, w), then either there is a path from s to v that passes through a
negative cycle or there is a path from s to w that passes through a negative cycle. In either
case, this gives a path from s to w that passes through a negative cycle. Moreover, this shows
that the vertex w must be reachable from s.

Moreover, also shown in the proof of the correctness of the Bellman-Ford algorithm, every
negative cycle contains at least one edge [v, w] satisfying dist[w] > dist[v]+ wt(v, w). Therefore,
if we construct the set N that consists of all vertices w such that there is an edge [v, w] making
dist[w] > dist[v]+ wt(v, w) (as noted above, this also implies that w is reachable from s), then
for every vertex w in N , there is a path from s to w that passes through a negative cycle, and
every negative cycle contains at least one vertex in N . Thus, there is a path from s to t that
passes through a negative cycle if and only if there is a vertex w in N such that t is reachable
from w.

Finally, it is obvious that dist[t] = +∞ if and only if t is not reachable from s.
This idea is implemented in the following algorithm.

Enhanced Bellman-Ford(G, s, t)

1. for (v = 1; v ≤ n; i++) dist[v] = +∞;

2. dist[s] = 0; ;

3. loop n-1 times

for (each edge [v, w])

if (dist[w] > dist[v] + wt(v, w))

dad[w] = v; dist[w] = dist[v] + wt(v, w);

4. if (dist[t] = +∞) Stop (’t is not reachable from s.’);

5. N = ∅;
6. for (each edge [v, w])

if (dist[w] > dist[v] + wt(v, w)) \\ this implies dist[w] 6=∞
N = N ∪ w;

7. for (each vertex w in N)

if (t is reacheable from w)

Stop (’s-t shortest path is not meaningful.’);

8. use the dad array to output a shortest path from s to t.

Steps 1-6 and 8 are basically the Bellman-Ford algorithm, so they take time O(nm). To
implement step 7, we can apply DFS on each vertex v in N, which takes time O(n + m). Thus,
step 7 in total takes time O(n(n + m)) = O(nm) (without loss of generality, we can assume
m ≥ n− 1). Alternatively, we can construct the reversed graph GR, then do a single DFS from
t, in time O(n+m) to find all those vertices in N that are reachable from t in the reversed graph
GR – these are the vertices in the original graph G from which t is reachable. In any case, step
7 takes time no more than O(nm). In conclusion, the algorithm Enhanced Bellman-Ford solves
the given problem in time O(nm).

3. Based on the Floyd-Warshall algorithm, develop an algorithm of time O(n3) that on a
weighted and directed graph G, constructs a matrix C[1..n, 1..n] such that for each vertex pair
(v, w):

1. C[v, w] = +∞, if w is not reachable from v;
2. C[v, w] = ”meaningless”,

if the shortest path problem from v to w is meaningless; and
3. C[v, w] = d, if the weight of a shortest path from v to w is d.
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Solution. The idea is similar to that of Question 2. For two vertices v and w, if there is a path
from v to w that passes vertices in negative cycles, then the shortest path problem from v to w
is meaningless. With the matrix C(n) constructed by the Floyd-Warshall algorithm, we can get
the related information easily: (1) a vertex x is in a negative cycle if and only if C(n)[x, x] < 0
(this can be proved by induction on the number of edges in the negative cycle); and (2) a path
from v to w passes a vertex x in negative cycles if and only if there exist a path from v to x
and a path from x to w, i.e., C(n)[v, x] 6= +∞ and C(n)[x,w] 6= +∞. These observations give
the following modified Floyd-Warshall algorithm, where M is the n×n adjacency matrix of the
graph G such that if [v, w] is an edge in G then M [v, w] is the weight of the edge, and if there
is no edge from v to w then M [v, w] = +∞:

Modified Floyd-Warshall(M)

1. C(0)[1..n, 1..n] = M[1..n, 1..n];

2. for (k = 1; k ≤ n; k++) \\ construct C(k)[1..n, 1..n] from C(k−1) [1..n, 1..n]

for (v = 1; v ≤ n; v++)

for (w = 1; w ≤ n; w++)

if (C(k−1)[v, w] < C(k−1)[v, k] + C(k−1)[k, w])

C(k)[v, w] = C(k−1)[v, w];

else C(k)[v, w] = C(k−1)[v, k] + C(k−1)[k, w];

3. N = ∅;
4. for (x = 1; x ≤ n; x++) \\ collect vertices in negative cycles

if (C(n)[x, x] < 0) add x to N;

5. for (v = 1; v ≤ n; v++) \\ check meaningfulness of shortest path

for (w = 1; w ≤ n; w++)

for (each vertex x in N)

5.1 if ((C(n)[v, x] 6= +∞) & (C(n)[x, w] 6= +∞))

C(n)[v, w] = "meaningless";

6. return the array C(n)[1..n, 1..n].

Steps 1-2 are the original Floyd-Warshall algorithm that constructs the matrix C(n)[1..n, 1..n].
Note that if vertex w is not reachable from vertex v then in the input matrix M , M [v, w] = +∞,
and in the matrix C(n), we also have C(n)[v, w] = +∞. Otherwise, C(n)[v, w] 6= +∞. Step 4
collects all vertices x in negative cycles in the graph G. In step 5, for each pair v and w of
vertices, the condition

x is in N, i.e., (C(n)[x, x] < 0) and (C(n)[v, x] 6= +∞) and (C(n)[x, w] 6= +∞)

tested in step 5.1 is necessary and sufficient for having a path from v to w that passes vertices
in negative cycles, i.e., for the shortest path problem from v to w to be meaningless. Finally,
it is easy to see that steps 3-6 also take time O(n3). In conclusion, the algorithm Modified
Floyd-Warshall is an algorithm that solves the given problem and runs in time O(n3).
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