
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50 pm - 5:00 pm Office Hours: T,TR 2:00 pm - 3:00 pm

Solutions to Assignment #3

1. Another way to perform topological sorting on a directed acyclic graph G = (V,E) is to
repeatedly find a vertex of in-degree 0, output it, and remove it and all of its outgoing edges
from the graph. Develop an O(|V | + |E|)-time algorithm using this approach. Your algorithm
should also be able to tell when the input graph has cycles.

Solutions. Denote by [u, v] the directed edge from vertex u to vertex v. Let Q be a First-In-
First-Out queue that keeps all the vertices with degree 0. The output of the algorithm is given
in an array A, in the topologically sorted order.

TopSort2(G) \\ G is a directed graph.

1. for (each vertex u) indeg[u] = 0;
2. for (each vertex u)

for (each edge [u, v]) indeg[u]++;
3. for (each vertex u)

if (indeg[u] = 0) Q← u;
4. p = −1;
5. while (Q is not empty)

5.1 u← Q; p++; A[p] = u;
5.2 for (each edge [u, v])
5.2.1 indeg[v]--;
5.2.2 if (indeg[v] == 0) Q← v;
6. if (p < n− 1) return(‘G has cycles’);

6.1. else return(A[0..n− 1]).

The array A maintains a partial topological order as vertices of in-dgree 0 are added in.
Each vertex u is pushed into the queue Q at most once, either in step 3 if its indegree is 0 in the
original graph G, or in step 5.2.2 when its indegree becomes 0 from 1. Therefore, the while-loop
in step 5 takes time O(|V |+ |E|). It is easy to verify that all other steps of the algorithm take
time O(|V |+ |E|). Therefore, the time complexity of the algorithm is O(|V |+ |E|).

The correctness of the algorithm is easy to see. When we place a vertex u in the array A[p],
the indegree of u is 0, which means that all coming-in edges to u are from array elements A[q]
with q < p. Thus, if the algorithm returns at step 6.1, where all vertices of G are placed in the
array A, then there will be no edge in G that goes from A[q] to A[p] with p < q, i.e., the array
A gives a topologically sorted order for the vertices of the graph G.

On the other hand, if the algorithm returns at step 6, then the graph G has a subgraph G′

in which no vertices have indegree 0. Then the subgraph G′ must have cycles. This can be seen
as follows. Start from any vertex in the subgraph G′ and traverse G′ following the reversed edge
directions. Since each vertex in G′ has indegree larger than 0, this traversing can never stop.

1

Thus, the traversing must eventually repeat vertices, i.e., the subgraph G′ must have cycles.
Thus, if the algorithm returns at step 6, then the graph G must have cycles.

2. Let G be a directed graph with strongly connected components C1, C2, . . ., Ck. The
component graph Gc for G is a directed graph of k vertices w1, w2, . . ., wk such that there is an
edge from wi to wj in Gc if and only if there is an edge from some vertex in Ci to some vertex in
Cj . Develop an O(|V |+ |E|)-time algorithm that on a given directed graph G = (V,E) produces
the component graph Gc for G. Make sure that there is at most one edge between two vertices
in the component graph Gc.

Solutions. Denote by [u, v] the edge from vertex u to vertex v. Use the algorithm given in
class to construct all strongly connected components C1, C2, . . ., Ck of G, which takes time
O(|V |+ |E|). Assume that the result is stored in an array Scc[0..n− 1] with 1 ≤ Scc[v] ≤ k so
that a vertex v in G is in the strongly connected component Ci if and only if Scc[v] = i. Let
CG [1..k] be an adjacency list for the component graph Gc, which, obviously contains at most
|V | vertices and |E| edges.

SCC-CG(G) \\ G is a directed graph.

1. use the SCC algorithm given in class to construct the array Scc[0..n− 1];
2. Ec = ∅;
3. for (each edge [u, v] in G)

3.1 if (Scc[u] 6= Scc[v])

3.2 add an edge [Scc[u],Scc[v]] to Ec;

4. sort the edges in Ec then remove repetitive edges;

5. for (each edge [x, y] in Ec)

5.1 add y to the linked list CG[x];
6. return CG[1..k].

By the SCC algorithm given in the class, the strongly connected components of the graph
G can be constructed in time O(|V |+ |E|) and named by the integers 1, 2, . . ., k, respectively.
Thus, for each vertex v in G, Scc[v] takes a value between 1 and k. Therefore, if an edge [u, v] in
G has Scc[u] = x and Scc[v] = y, with x 6= y, then we add an edge [x, y] in step 3.2 to the set Ec.
Steps 1-3 and 5-6 obviously take time O(|V | + |E|). We need to give some explnations to step
4 that sorts the edges in Ec. Since each edge [x, y] in Ec satisfies 1 ≤ x, y ≤ k, we can use the
linear-time sorting algorithm RadixSort to sort the edges in Ec in time O(|E|+k) = O(|V |+|E|)
(note that after step 3, Ec contains |E| edges). Once the edges in Ec get sorted, we can easily
go through the sorted edges in Ec and remove repetitive edges. Thus, step 4 of the algorithm
takes time O(|V |+ |E|). Summarizing the above discussion, we conclude that the algorithm in
total takes time O(|V |+ |E|).

3. Design algorithms for Max(H), Insert(H, a), and Delete(H, i), where the set H is stored in
a max-heap, a is the element to be inserted into the heap H, and i is the index of the element
in the heap H to be deleted. Analyze the complexity of your algorithms.

Solutions. A heap H is a complete binary tree with possibly some of its rightmost leaves
missing. Thus, a heap of n nodes has a height bounded by log n. Moreover, because of its
special structure, a heap H of n elements can be represented by an array A[1...max] and an
index n so that A[1...n] holds the n elements of H. If we place the elements in the heap level by
level, starting from the root, and following the order from left to right, into the array A[1...n],

2

then it is not difficult to verify that for an element A[i] in the heap, A[2i] and A[2i + 1] are the
two children of A[i], and A[bi/2c] is the father of A[i].

A max-heap A[1...n] is a heap that satisfies the condition that the value of each element in
the heap is not smaller than the values of its children, i.e., A[i] ≤ A[2i] and A[i] ≤ A[2i + 1] for
all 1 ≤ i ≤ bn/2c. It is easy to verify that for all i, the value A[i] is not smaller than that of any
of its descendants. In particular, the root A[1] has the maximum value in the heap.

The algorithms for Max(H), Insert(H, a), and Delete(H, i) are given as follows. For more
detailed discussions on heaps, the students are referred to the textbook, Chapter 6.

Max(A[1..max], n) \\ find the maximum in the max-heap A[1..n]

1. return (A[1]);

Insert(A[1..max], n, a) \\ insert a new element a in the max-heap A[1..n]
1. n = n+ 1; A[n] = a; i = n;
2. while (A[bi/2c] < A[i] and i ≥ 2)
2.1 swap A[bi/2c] and A[i];
2.2 i = bi/2c;

Delete(A[1..max], n, i) \\ delete the element A[i] in the max-heap A[1..n]

1. A[i] = A[n]; n = n− 1;
2. if (i ≥ 2 and A[i] > A[bi/2c])
2.1 while (i ≥ 2 and A[i] > A[bi/2c]) \\ pushing up

2.1.1 swap A[i] and A[bi/2c]; i = bi/2c;
3. else

3.1 while (2i ≤ n and (A[i] < A[2i] or A[i] < A[2i+ 1])) \\ pushing down

3.1.1 if (2i = n or A[2i] > A[2i+ 1])
swap A[i] and A[2i]; i = 2i;

3.1.2 else

swap A[i] and A[2i+ 1]; i = 2i+ 1;

It is easy to see that the algorithm Min(A,n) takes time O(1). Each of the algorithms
Insert(A,n; a) and Delete(A,n; i) starts from a node in the heap, and traverses in a path
between the root and a leaf of the heap. Since a heap of n elements has its height bounded by
log n, each of the algorithms Insert(A,n; a) and Delete(A,n; i) takes time O(log n).

4. Consider an extended version of the Shortest-Path problem. Suppose that you want to
traverse from city s to city t. In addition, for some reason, you also need to pass through cities x,
y, and z (in any order) during your trip. Your objective is to minimize the cost of the trip. The
problem can be formulated as a graph problem as follows: Given a positively weighted directed
graph G and five vertices s, t, x, y, z, find a path from s to t that contains the vertices x, y,
z such that the path is the shortest over all paths from s to t that contain x, y, z, assuming
that these paths are allowed to contain repeated vertices and edges. Develop an O(m log n)-time
algorithm for this problem. (Hint. In this question, you can assume Dijkstra’s Shortest-Path
algorithm.)

Solution. The desired path will have three additional “stops” during the trip:

s→ w1 → w2 → w3 → t,

where (w1, w2, w3) is a proper ordering of the vertices x, y, z. Therefore, there are two questions
that need to be answered: (1) how do we find the correct ordering for the vertices x, y, z in the
trip, to make the trip short? and (2) when the ordering for x, y, z is given, how do we find the
shortest path from s to t using that ordering?

3

We consider question (2) first. Assume (w1, w2, w3) is an ordering of x, y, z. We claim that
the following path P is the shortest among all s-t paths that pass through the vertices x, y, z in
the ordering (w1, w2, w3): the path P starts at s, follows a shortest path P0 from s to w1, then a
shortest path P1 from w1 to w2, then a shortest path P2 from w2 to w3, and then a shortest path
P3 from w3 to t. To see why this claim holds, let P ′ be any s-t path that passes through the
vertices x, y, z in the ordering (w1, w2, w3). Let P ′0, P

′
1, P

′
2, and P ′3 be the subpaths of P ′ that

are, respectively, from s to w1, from w1 to w2, from w2 to w3, and from w3 to t. Since P0, P1,
P2, and P3 are the shortest paths for those vertex pairs, respectively, we must have length(Pi) ≤
length(P ′i), for i = 0, 1, 2, 3. Therefore,

length(P) = length(P0) + length(P1) + length(P2) + length(P3)

≤ length(P ′0) + length(P ′1) + length(P ′2) + length(P ′3) = length(P ′).

That is, P is the shortest such path. As a conclusion, when an ordering (w1, w2, w3) of x, y, z
is given, we can call Dijkstra’s algorithm (four times) to construct the shortest paths that are,
respectively, from s to w1, from w1 to w2, from w2 to w3, and from w3 to t. The concatenation
of these paths gives an s-t path that is the shortest among all s-t paths that pass through the
vertices x, y, z in the ordering (w1, w2, w3).

Now we get to question (1): how do we determine the best ordering of x, y, z? Currently
there is no better way than exhaustive searching. Fortunately, there are in total only 3! = 6
different orderings for x, y, z. Thus, we can try all of them. This gives us the following algorithm
for the given problem:

Multi-Stop-Path(G, s, t, x, y, z) \\ G is a positively weighted graph.

1. P = ∅; wt(P) = +∞;

2. for (each permutation (w1, w2, w3) of x, y, z)
2.1 call Dijkstra’s algorithm to construct the shortest paths P0, P1, P2, and P3 that are,

respectively, from s to w1, from w1 to w2, from w2 to w3, and from w3 to t;
2.2 Let P ′ be the concatenation of P0, P1,P2, P3;

2.3 if (the length wt(P ′) of P ′ is smallest than wt(P))
then P = P ′; wt(P) = wt(P ′);

3. return (the path P).

On each permutation of x, y, z, the for-loop in the algorithm calls Dijkstra’s algorithm
four times to construct the shortest s-t path following that permutation. Since there are 3! = 6
permutations of x, y, z, the algorithm basically calls Dijkstra’s algorithm 24 times to find the
shortest s-t path that contains x, y, z. Thus, its running time is of the same order as Dijkstra’s
algorithm, which is O(m log n).

Remark 1. A natural question on the above algorithm is: what if there is no s-t path that
contains all vertices x, y, and z? This can be handled as follows. We know that Dijkstra’s
algorithm can properly handle the issue when there is no path from s to t: in this case, when
Dijkstra is running out of fringes, the vertex t still remains “unseen”. Thus, we can assume that
when there is no s-t path in the input graph, Dijkstra’s algorithm will report so. Now for two
vertices v1 and v2, if there is no path from v1 to v2, then we define the weight of the path from
v1 to v2 as +∞. As a consequence, for a given ordering (w1, w2, w3) of x, y, z, if one of the s-w1

path P0, the w1-w2 path P1, the w2-w3 path P2, and the w3-t path P3 does not exist, then the
concatenation P ′ of P0, P1, P2, P3 constructed in step 2.2 will have weight +∞, which will not
replace the current path P . In particular, if there is no s-t path that contains x, y, z, at all,
then for all orderings of x, y, z, the path P ′ constructed in step 2.2 has weight +∞ and will not

4

replace the path P . Thus, the path P remains as ∅ with weight +∞, and will be returned in
step 3, which is interpreted as a report that there is no s-t path contains the vertices x, y, z.

Remark 2. An algorithm with 24 calls to Dijkstra’s algorithm seems a bit too much, in
particular in practice. In fact, it is rather easy to reduce the number of calls to Dijkstra’s
algorithm. For example, very simple observations will show that you can solve the problem
based on the same idea but using only 12 calls to Dijkstra for directed graphs, and only 9 calls
to Dijkstra for undirected graphs (HOW?) In fact, I think I can further improve this so that I
can solve the problem using only 4 calls to Dijkstra for directed graphs and using only 3 calls
to Dijkstra for undirected graphs. Can you do this, or can you do even better?

5

