
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50 pm - 5:00 pm Office Hours: T,TR 2:00 pm - 3:00 pm

Solutions to Assignment #1

1. Answer the following questions, and give a brief explanation for each of your answers.
a) True or False: Quicksort takes time O(n log n);
b) True or False: Quicksort takes time O(n2);
c) True or False: Mergesort takes time O(n log n);
d) True or False: Mergesort takes time O(n2);

Solutions.
a) False. As we studied in undergraduate algorithms, Quicksort may take time Ω(n2) in the

worst case, i.e., the running time for Quicksort can be at least c ·n2, where c is a fixed constant,
for some input of n elements (for all n’s). Thus, there is no constant c′ such that the running
time of Quicksort is bounded by c′ · n log n for all n. That is, the running time of Quicksort
cannot be O(n log n).

b) True. Again by undergraduate algorithms, the running time of Quicksort is bounded by
c · n2 for a constant c. Thus, it runs in time O(n2).

c) True. By undergraduate algorithms, the running time of Mergesort is bounded by c·n log n
for a constant c. Thus, it runs in time O(n log n).

d) True. As explained about, the running time of Mergesort is bounded by c · n log n for a
constant c. Thus, it is also bounded by c ·n2 because n log n ≤ n2 for all n ≥ 1. By the definition
of O-notation, this means that Mergesort takes time O(n2).

2. Prove: any comparison-based searching algorithm on a set of n elements takes time Ω(log n)
in the worst case. (Hint: you may want to read Section 8.1 of the textbook for related
terminologies and techniques.)

Proof. A searching algorithm solves the following search problem

Search(S, x): Determine if the element x is contained in the set S.

As descried in the textbook (pages 191-193), here we assume that there is an order defined
on the elements. Thus, any two elements x and y can be compared using one of the relations
x < y, y < x, x ≤ y, y ≤ x, and x = y. A searching algorithm based on comparisons uses
only comparisons to gain order information of the input. Therefore, no matter how the set
S is organized, a searching algorithm A based on comparisons can always be depicted as a
decision-tree T . The decision-tree T is a binary tree in which each internal node corresponds to
a comparison and its two children correspond to the two outcomes of the comparison, and each

1



leaf corresponds to a conclusion of the search result (i.e., “Yes, x is in S”, or “No, x is not in
S”). In this model, for each given input (S, x), a comparison (i.e., an internal node in T ) will
have a unique outcome, so the algorithm on this input will follow a particular path from the
root to a leaf in T , in which the leaf gives the conclusion of the algorithm on the input.

Now fix a set S of n elements, S = {1, 2, . . . , n}, and consider any searching algorithm A
on the input (S, x), where x may vary. Thus, if x is an integer i between 1 and n, then the
algorithm A will return Yes. Otherwise, the algorithm returns No.

We first show that the decision-tree T corresponding to the algorithm A contains at least n
Yes-leaves. For this, it suffices to show that for two integers i and j between 1 and n, i < j, the
two root-leaf paths in T corresponding to the inputs (S, i) and (S, j), respectively, are different.
Assume the contrary that the inputs (S, i) and (S, j) correspond to the same root-leaf path P
in T . Then consider the input (S, i + 0.5). We have the following facts:

(1) the inputs (S, i) and (S, j) follow the same root-leaf path P in T ;
(2) the outcome of each branch in T is determined by an element comparison, and on inputs

(S, i) and (S, j), each comparison has the same outcome; and
(3) i < i + 0.5 < j.
These facts derive that the input (S, i + 0.5) must also follow the same root-leaf path P

and ends at the Yes-leaf in P. But this is a contradiction because the algorithm A should have
concluded No on the input (S, i + 0.5).

This shows that the decision-tree T has at least n leaves (in fact, it has at least n Yes-leaves,
so it should have at least n + 1 leaves since it must have at least one No-leaf). It is well-known
that a binary tree with at least n leaves has a root-leaf path of length h ≥ blog nc (CSCE-629
Students: you should verify this). This means that some input (S, x) will follow this path
and go through h − 1 internal nodes in T . These h − 1 internal nodes in T correspond to
h− 1 comparisons in the algorithm A. Thus, on the input (S, x), the algorithm A makes h− 1
comparisons so it runs at least h − 1 steps. Because our analysis is based on the worst-case
performance, and because h ≥ blog nc, we conclude that the searching algorithm A takes time
Ω(h) = Ω(logn) (in the worst case). 2

3. Consider the following operation on a set S:

Neighbors(S, x): find the two elements y1 and y2 in the set S, where y1 is the largest
element in S that is strictly smaller than x, while y2 is the smallest element in S
that is strictly larger than x.

Develop an O(log n)-time algorithm for this operation, assuming that the set S is stored in
a 2-3 tree. Hint: the element x can be either in or not in the set S.

Solutions. We used the following facts mentioned in the notes:

(1) l(v): the largest element stored in the subtree rooted at child1(v).
(2) m(v): the largest element stored in the subtree rooted at child2(v)
(3) h(v): the largest element stored in the subtree rooted at child3(v) (if child3(v) exists).

We use the algorithm in Figure 1 to solve the problem. Two simple functions Min and Max
are given, which return the smallest and the largest element in a 2-3 tree, respectively. In the
main algorithm Neigobors, we have two pointers L and R, which record the “left sibling” and
“right sibling” of the current node r in our search, respectively, so that if x is the smallest in the
subtree rooted at r, then Max(L) will be the element y1, while if x is the largest in the subtree
rooted at r, then Min(R) will be the element y2.

2



function. Min(r) \\ return the smallest in r
1. if (r = Nil) return(Nil);
2. while (r is not a leaf) r = child1(r);
3. return(value(r)).

function. Max(r) \\ return the largest in r
1. if (r = Nil) return(Nil);
2. while (r is not a leaf)

if (child3(r) = Nil) r = child2(r); else r = child3(r)
3. return(value(r)).

Algorithm. Neighbors(r, x)
Input: the root r of a 2-3 tree T and element x
Output: the largest element y1 in T that is smaller than x, and

the smallest element y2 in T that is larger than x.

1. L = Nil; R = Nil;

2. while (r is not a leaf)

if (l(r) ≥ x) r = child1(r); R = child2(r);

else if (m(r) ≥ x) or (child3(r) == Nil)

r = child2(r); L = child1(r);

if (child3(r) 6= Nil) R = child3(r);

else r = child3(r); L = child2(r);

\\ r is a leaf now

3. if (value(r) == x) y1 = Min(L); y2 = Max(R);

else if (value(r) < x) y1 = r; y2 = Max(R);

else y1 = Min(R); y2 = r;

4. return(y1, y2).

Figure 1: Finding neighbors

3



Since the algorithm basically traverses a path from the root to a leaf in the 2-3 tree, and
spends constant time at each node in the tree, its running time is bounded by O(h), where h
is the height of the 2-3 tree. Since the 2-3 tree is for the set S of n elements, the height of the
2-3 tree is bounded by log n. In conclusion, the algorithm runs in time O(log n) and solves the
given problem.

4. Consider the following problem: given a 2-3 tree T of n leaves, and an integer k such that
log n ≤ k ≤ n, find the k smallest elements in the tree T . Develop an O(k)-time algorithm
for the problem. Give a detailed analysis to explain why your algorithm runs in time O(k).

Solution. Algorithm 1 is used to find the k smallest elements. In this algorithm, k is a global
variable. If the 2-3 tree is empty or contains a single leaf, then the algorithm returns in step 2 or
step 5, respectively, which is obviously correct. Inductively, assume that the algorithm Topk(rh)
correctly outputs the assumed number of elements and decreases the global variable k on 2-3
trees of h < n leaves. Then on a 2-3 tree that has n leaves and is rooted at rn, steps 7-8 of the
algorithm Topk(rn) will correctly work on the first child child1(rn) of the root rn (note that
child1(rn) has fewer leaves than rn). Thus, if child1(rn) has at least k leaves, then the recursive
call Topk(child1(rn)) in step 8 will output the k smallest elements in child1(rn) and set the
global variable k = 0, so steps 10-15 of the algorithm will not be executed and the algorithm
Topk(rn) returns correctly. On the other hand, if child1(rn) has fewer than k leaves, then the
recursive call Topk(child1(rn)) in step 8 will output all elements in child1(rn) and decrease the
global variable k. Since child1(rn) has fewer than k leaves, k remains larger than 0, so step 11
of the algorithm will continue finding the rest of the elements in child2(rn), and so on. This
shows that correctness of the algorithm.

Algorithm 1 Algorithm Topk(r)

Input: A 2-3 tree with root r and k
Output: the k smallest elements

1: if r is empty and k > 0 then
2: return “no enough elements”;
3: end if
4: if r is a leaf node and k > 0 then
5: let k = k − 1; output value(r); return;
6: end if
7: if k > 0 then
8: Topk(child1(r));
9: end if

10: if k > 0 then
11: Topk(child2(r));
12: end if
13: if k > 0 and r has a third child then
14: Topk(child3(r));
15: end if
16: return;

To see the time complexity of the algorithm, let us say that a node v in the 2-3 tree is visited
if a recursive call Topk(v) is made on the node v during the execution of the algorithm. Let r

4



be a node in the 2-3 tree of height hr, and assume that Topk(r) is called on r with the global
variable k having value k0. We claim that the total number of visited nodes in the subtree
rooted at r is bounded by hr + 2k0. This is obviously correct when r is a leaf. Now consider the
case where r is not a leaf.

If the first child child1(r) of r has at least k0 leaves, then by induction, the total number
of visited nodes in the subtree rooted at child1(r) is bounded by (hr − 1) + 2k0 since the the
subtree rooted at child1(r) has height hr − 1. Since in this case, k will become 0 at step 9, no
recursive calls will be made on the other children of r. Thus, the total number of visited nodes
in the tree rooted at r is ((hr − 1) + 2k0) + 1 = hr + 2k0 (including the node r and all visited
nodes in the subtree rooted at child1(r)).

If the first child child1(r) of r has k1 nodes such that k1 < k0 leaves, then all nodes in the
subtree rooted at child1(r) are visited, and the recursive call on child2(r) in step 11 will be
made (with the global variable k = k0 − k1). Note that the subtree rooted at child1(r) has less
than 2k1 nodes.

Suppose that child2(r) has k2 leaves, and k2 ≥ k0 − k1, then by the induction, at most
(hr − 1) + 2(k0 − k1) nodes in the subtree rooted at child2(r) are visited, and no recursive call
will be made on the third child child3(r) of r. Therefore, in this case, the total number of visited
nodes in the tree rooted at r is bounded by

2k1 + [(hr − 1) + 2(k0 − k1)] + 1 = hr + 2k0,

where the subtree rooted at child1(r) has no more than 2k1 visited nodes, the subtree rooted at
child2(r) has no more than (hr − 1) + 2(k0 − k1) visited nodes, and the root r is also a visited
node. Again the inductive proof goes through.

Finally, if k2 < k0−k1, then the number of visited nodes in the subtree rooted at child1(r) is
bounded by 2k1, the number of visited nodes in the subtree rooted at child2(r) is bounded by 2k2,
the global variable k will have value k0−(k1+k2) at step 12 of the algorithm, and a recursive call
will be made on the third child child3(r) of r, which will make at most (hr−1)+2(k0−(k1+k2))
visited nodes in the subtree rooted at child3(r). Adding all the visited nodes in this case, we
again derive that the number of visited nodes in the tree rooted at r is bounded by hr + 2k0.
This completes the proof for our claim.

In particular, the number of visited nodes in the given input tree to the algorithm is bounded
by log n + 2k. Since we spend only constant time on each visited node in the tree and since
k ≥ log n, we conclude that the algorithm runs in time O(log n + k) = O(k).

5


