
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm–5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Course Project

(Due December 2, 2022)

Network optimization has been an important area in the current research in computer
science and computer engineering. In this course project, you will implement a network
routing protocol using the data structures and algorithms we have studied in class. This
provides you with an opportunity to translate your theoretical understanding into a real-
world practical computer program. Translating algorithmic ideas at a “higher level” of
abstraction into real implementations in a particular programming language is not at
all always trivial. The implementations often force you to work on more details of the
algorithms, which sometimes may lead to much better understanding.

Your implementation should include the following parts:

1. Random Graph Generation. Write subroutines that generate two kinds of “ran-
dom” undirected graphs of 5000 vertices.

• In the first graph G1, the average vertex degree is 6;

• In the second graph G2, each vertex is adjacent to about 20% of the other vertices,
which are randomly chosen;

• Randomly assign positive weights to edges in the graphs.

Your graphs should be ”random” enough. Therefore, in the graph G1, the pairs of
vertices that are adjacent should be chosen randomly, and in the graph G2, the number
of neighbors and the neighbors of a vertex should be chosen randomly. To make sure that
your graphs are connected, I suggest that you start with a cycle that contains all vertices
of the graphs, then add the rest edges randomly.

2. Heap Structure Write subroutines for the max-heap structure. In particular, your
implementation should include subroutines for maximum, insert, and delete.

Since the heap structure you implement will be used for a Dijkstra-style algorithm in
the routing protocol, we suggest the following data structures in your implementation:

• The vertices of a graph are named by integers 0, 1, . . ., 4999;

1



• The heap is given by an array H[5000], where each element H[i] gives the name of
a vertex in the graph;

• The vertex “values” are given in another array D[5000]. Thus, to find the value of
a vertex H[i] in the heap, we can use D[H[i]].

• In the operation delete(v) that deletes the vertex v from the heap H[5000], you
need to find the position of the vertex in the heap. For this, you can use another
array P [5000] so that P [v] is the position (i.e., index) of vertex v in the heap H[5000].
Note that this array P [5000] should be modified according when you move vertices
in the heap H[5000].

3. Routing Algorithms Your algorithms are to solve the Max-Bandwidth-Path
problem for which you need to find a path of the maximum bandwidth between two
vertices in a given weighted undirected graph. You should have three different versions of
implementations:

• An algorithm for Max-Bandwidth-Path based on a modification of Dijkstra’s
algorithm without using a heap structure;

• An algorithm for Max-Bandwidth-Path based on a modification of Dijkstra’s
algorithm using a heap structure for fringes;

• An algorithm for Max-Bandwidth-Path based on a modification of Kruskal’s al-
gorithm, in which the edges are sorted by HeapSort.

4. Testing. Test you routing algorithms on 5 pairs of graphs G1 and G2, randomly
generated using your subroutines implemented in Step 1. For each generated graph, pick at
least 5 pairs of randomly selected source-destination vertices. For each source-destination
pair (s, t) on a graph G, run each of the three algorithms on the pair (s, t) and the graph
G, and record their running time (you should find a proper way to “count” the running
time of an algorithm).

5. Report. Write a report of at least 5 typed pages, which explains your implementation
details, and discusses and analyzes the performance of your routing algorithms on different
kinds of input graphs. The data you record in Step 4 for the algorithm performance should
also be given here. Also, if possible, discuss any possible further improvements on data
structures, algorithms, and implementations.

2


