CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Office: PETR 428 Phone: (979) 845-4259 Email: chen@cse.tamu.edu Office Hours: MWF 3:50pm-5:00pm Teaching Assistant: Vaibhav Bajaj Office: EABC 107B Phone: (979) 739-2707 Email: vaibhavbajaj@tamu.edu Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Assignment # 5(Due November 16, 2022)

1. A vertex v in an undirected graph G is an *odd cycle transversal* if every cycle of odd length in G contains the vertex v. Develop a linear-time algorithm for the following problem: given a graph G and a vertex v in G, decide if v is an odd cycle transversal.

2. Suppose that each class C_i has an enrollment r_i while each classroom R_j has a capacity c_j . A classroom R_j is "feasible" for a class C_i if $c_j/2 \le r_i \le c_j$. Develop an efficient algorithm that, on a set of classes (with enrollments given) and a set of classrooms (with capacities given), make a feasible assignment of the classes to the classrooms such that the as many classes as possible can get held starting at 9am on Monday.

3. Suppose that in addition to edge capacities, a flow network also has *vertex capacities*, i.e., each vertex v has a limit c(v) on how much flow can pass through v. Show how to transform a flow network G = (V, E) with vertex capacities into a flow network G' = (V', E') without vertex capacities, such that a maximum flow in G' has the same value as a maximum flow in G.

4. (Textbook, page 731, Question 26.2-10) Show how to find a maximum flow in a flow network G = (V, E) by a sequence of at |E| augmenting paths. (*Hint*: determine the paths *after* finding the maximum flow.)