
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm–5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Quick References on NP-Completeness Theory

Definitions.

1. A problem Q is solvable in polynomial time if there is an algorithm that solves the
problem Q in time O(nc), where c is a constant.

2. The class P consists of all (decision) problems that can be solved in polynomial time.
Thus, P is the collection of all “easy” (or, feasible) problems.

3. NP is the class of all (decision) problems whose solutions, though perhaps not easy to
construct, but can be verified in polynomial time. Formally, a problem Q is in NP if there
is an algorithm A(x, y) on two parameters x and y such that

(a) If x is a yes-instance of Q, then there is a y such that A(x, y) = 1;

(b) If x is a no-instance of Q, then for all y, A(x, y) = 0; and

(c) A(x, y) runs in time polynomial in |x| (i.e., in time O(|x|c) for a constant c).

4. For two decision problems Q1 and Q2, we say that Q1 is polynomial-time reducible
to Q2, written Q1 ≤p

m Q2, if there is a polynomial-time algorithm R such that x is a
yes-instance of Q1 if and only if R(x) is a yes-instance of Q2.

5. A problem Q is NP-hard if for every problem Q′ in NP, we have Q′ ≤p
m Q. A problem

Q is NP-complete if it is in NP and is NP-hard.

6. The Satisfiability problem (SAT): given a CNF formula F , decide if F is satisfiable
(i.e., if there is an assignment to F that makes F = true).

7. The Independent-Set problem (IS): given a graph G and an integer k, decide if G
contains an independent set I of k vertices (i.e., a set I of k vertices in which no two
vertices are adjacent).

8. The Vertex-Cover problem (VC): given a graph G and an integer k, decide if G contains
a vertex cover C of k vertices (i.e., a set C of k vertices such that every edge in G has at
least one end in C).

9. The Partition problem: given a set S = {a1, a2, . . . , an} of n integers, can S be parti-
tioned into two sets L and R, i.e., S = L∪R and L∩R = ∅, such that

∑
ai∈L ai =

∑
aj∈R aj?

10. The problems Satisfiability, Independent-Set, Vertex-Cover, Clique, Parti-
tion, Subset-Sum, and Knapsack are all NP-complete.

1

Some (informal but intuitive and helpful) Statements

1. P is the collection of all “easy” problems. A problem that cannot be solved in polynomial
time (i.e., not in P) is regraded as being hard.

2. When we compare the “hardness” of problems, we compare them “up to polynomial time”.
Thus, if the complexities of two problems differ by a polynomial factor (i.e., by nc for a
constant c), we would regard them as having the “same” complexity, i.e., they are either
both easy or both hard. For example, if problem Q1 is solvable in time O(n2) while
problem Q2 is solvable in time O(n5), then we regard Q2 as not harder than Q1.

3. NP is the collection of all (decision) problems whose solutions can be verified “easily.”
Thus, when we say “a problem Q is in NP,” what we really wanted to emphasize is
the “easiness” of the problem, i.e., the solutions of the problem are easily verified. The
statement has nothing to do with the “hardness” of the problem. In particular, all easy
problems (i.e., problems in P) are in NP.

4. Q1 ≤p
m Q2 means that Q1 is not harder than Q2, or that Q2 is not easier than Q1. As a

consequence, if Q1 is hard, then Q2 is also hard, and if Q2 is easy, then Q1 is also easy.

5. A problem is NP-hard if it is not easier than any problems in NP. A problem is NP-
complete if it is the hardest problem in NP. There are NP-hard problems that are not
in NP (i.e., they are not NP-complete).

6. The logic of using NP-hardness: Since NP contains many known problems that seem
hard (i.e., we do not know how to solve them in polynomial time), and since an NP-hard
problem is not easier than any problem in NP, an NP-hard (including NP-complete)
problem is believed to be hard, though there is no formal proof for this.

7. By definition, all (decision) problems in P are in NP, i.e., P ⊆ NP. Whether all problems
in NP are easy (i.e., if P = NP) is the most famous open problem in computer science.
It is commonly believed that P 6= NP. Under this hypothesis, all NP-hard problems are
hard (i.e., cannot be solved in polynomial time).

8. To show Q1 ≤p
m Q2, you need to construct a polynomial-time algorithm R that computes

a function f such that x is a yes-instance of Q1 if and only if f(x) is a yes-instance of
Q2. The algorithm R can be highly non-trivial, and in general heavily depends on the
problems Q1 and Q2.

9. To prove that a problem Q is in NP, you need to construct a polynomial-time algorithm
A(x, y) such that for any yes-instance x1 of Q, there is a y1 such that A(x1, y1) = 1, and
for any no-instance x2 of Q, A(x2, y) = 0 for all y. In most cases, the algorithm A is rather
trivial and straightforward.

10. To prove that a problem Q is NP-hard, you need to pick a problem Q0 that is known to
be NP-hard, and show Q0 ≤p

m Q.

11. To prove that a problem Q is NP-complete, you need to prove both that Q is NP-hard
and that Q is in NP.

12. Remember the definitions of the following NP-complete problems: Independent-Set,
Vertex-Cover, Clique, Partition, Subset-Sum, Knapsack, and Satisfiability.

2

