
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm–5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Course Notes. Maximum Flow Algorithms

Suppose that we have built a network of pipes to transport oil in an area. Each pipe has
a fixed capacity for pumping oil, measured by barrels per hour. Now suppose that we want to
transport a very large quantity of oil from city s to city t. How do we use the network system
of pipes so that the oil can be transported in the shortest time?

The problem can be modeled by the Maximum Flow problem. The network of pipes will
be modeled by a directed graph G with two distinguished vertices s and t. Each edge in the
graph G is associated with an integer, indicating the capacity of the corresponding pipe. Now
the problem is to assign each edge with a flow, less than or equal to its capacity, so that the
maximum amount of flow goes from vertex s to vertex t.

The Maximum Flow problem arises in many settings in operations research and other fields.
In particular, it can be used to model liquids flowing through pipes, parts through assembly lines,
current through electrical networks, information through communication networks, and so forth.
Efficient algorithms for the problem have received a great deal of attention in the past decades.

1 Definitions and basic facts

We start with the formal definitions.

Definition A flow network G = (V,E) is a directed graph with two distinguished vertices s
(the source) and t (the sink). Each edge [u, v] in G is associated with a positive integer cap(u, v),
called the capacity of the edge. If there is no edge from u to v, then cap(u, v) = 0.

Remark. There is no special restriction on the directed graph G that models a flow network.
In particular, we allow edges in G to be directed into the source and out of the sink.

Intuitively, a flow in a flow network should satisfy the following three conditions:
(1) the amount of flow along an edge should not exceed the capacity of the edge (capacity

constraint);
(2) a flow from a vertex u to a vertex v can be regarded as a “negative” flow of the same

amount from vertex v to vertex u (skew symmetry); and
(3) except for the source s and the sink t, the amount of flow getting into a vertex v should

be equal to the amount of flow coming out of the vertex (flow conservation).
These conditions are formally given in the following definition.

1

Definition A flow f in a flow network G = (V,E) is an integer-valued function on pairs of
vertices of G satisfying the following conditions:

1. For all u, v ∈ V , cap(u, v) ≥ f(u, v) (capacity constraint);

2. For all u, v ∈ V , f(u, v) = −f(v, u) (skew symmetry);

3. For all u 6= s, t,
∑

v∈V f(u, v) = 0 (flow conservation).

An edge [u, v] is saturated by the flow f if cap(u, v) = f(u, v). A path P in the flow network
G is saturated by the flow f if at least one edge in P is saturated by f .

Note that even when there is no edge from a vertex u to a vertex v, the flow value f(u, v)
can still be non-zero. For example, suppose that there is no edge from u to v but there is an
edge from v to u of capacity 10, and that the flow value f(v, u) is equal to 8. Then by the skew
symmetry property, the flow value f(u, v) is equal to −8, which is not 0.

However, if there is neither edge from u to v and nor edge from v to u, then the flow value
f(u, v) must be 0. This is because from cap(u, v) = cap(v, u) = 0, by the capacity constraint
property, we must have f(u, v) ≤ 0 and f(v, u) ≤ 0. By the skew symmetry property, f(v, u) ≤ 0
implies f(u, v) ≥ 0, which together with f(u, v) ≤ 0 gives f(u, v) = 0.

Figure 1 is an example of a flow network G with a flow, where on each edge e = [u, v], we
label a pair of numbers as “a/b” to indicate that the capacity of the edge e is a and the flow
from vertex u to vertex v is b.

ks kv3 kv4

kv1 kv2 kt

- -

- -

6 6

?

2/0 4/4

4/4 2/0

7/4 4/4 8/4

Figure 1: A flow network with a flow

Given a flow network G = (V,E) with the source s and the sink t, let f be a flow on G. The
value of the flow is defined to be

∑
v∈V f(s, v), denoted by |f |.

Now the Maximum Flow problem can be formally defined as follow:

Maximum Flow:

Given a flow network (G, s, t), construct a flow in G with the largest value.

Our first observation on the properties of a flow is as follows.

Lemma 1 Let G = (V,E) be a flow network with the source s and the sink t, and let f be a
flow in G. Then the value of the flow f is equal to

∑
v∈V f(v, t).

Proof. We have

|f | =
∑
v∈V

f(s, v) =
∑
w∈V

∑
v∈V

f(w, v)−
∑
w 6=s

∑
v∈V

f(w, v).

2

By the skew symmetry property, f(w, v) = −f(v, w). Note that in the sum
∑

w∈V
∑

v∈V f(w, v),
for each pair of vertices w and v, both f(w, v) and f(v, w) appear exactly once. Thus, we have∑

w∈V
∑

v∈V f(w, v) = 0. Now apply the skew symmetry property on the second term on the
right hand side, we obtain

|f | =
∑
w 6=s

∑
v∈V

f(v, w).

Thus, we have
|f | =

∑
w 6=s

∑
v∈V

f(v, w) =
∑

w 6∈{s,t}

∑
v∈V

f(v, w) +
∑
v∈V

f(v, t).

Finally, by the skew symmetry and the flow conservation, for each w 6= s, t, we have∑
v∈V

f(v, w) = −
∑
v∈V

f(w, v) = 0.

Thus, the sum
∑

w 6∈{s,t}
∑

v∈V f(v, w) is equal to 0. This proves that |f | =
∑

v∈V f(v, t).

The following lemma describes a basic technique to construct a positive flow in a flow network.

Lemma 2 Let G = (V,E) be a flow network with the source s and the sink t. There is a flow
f in G with a positive value if and only if there is a path in G from s to t.

Proof. Suppose that there is a path P from the source s to the sink t. Let e be an edge on P
with the minimum capacity c > 0 among all edges in P . Now it is easy to see that if we assign
flow of value c to each edge on the path P , and assign flow 0 to all other edges, we get a valid
flow of value c > 0 in the flow network G.

For the other direction, suppose that f is a flow of positive value in the flow network G.
Assume the contrary that there is no path in G from s to t. Let V ′ be the set of vertices in G
that are reachable from s. Then t 6∈ V ′.

Let w be a vertex in V ′. We first show∑
v∈V ′

f(w, v) =
∑
v∈V

f(w, v)−
∑
v 6∈V ′

f(w, v) ≥
∑
v∈V

f(w, v). (1)

In fact, for any v 6∈ V ′, since v is not reachable from the source s, there is no edge from w to v.
Thus, cap(w, v) = 0, which implies f(w, v) ≤ 0 by the capacity constraint property.

By Equation (1), we have

|f | =
∑
v∈V

f(s, v) ≤
∑
v∈V ′

f(s, v) =
∑
w∈V ′

∑
v∈V ′

f(w, v)−
∑

w∈V ′−{s}

∑
v∈V ′

f(w, v).

By the skew symmetry property,
∑

w∈V ′
∑

v∈V ′ f(w, v) = 0. Thus,

|f | = −
∑

w∈V ′−{s}

∑
v∈V ′

f(w, v).

For each w ∈ V ′ − {s}, according to Equation (1) and the flow conservation property, we have
(note t 6∈ V ′ so w cannot be t) ∑

v∈V ′
f(w, v) ≥

∑
v∈V

f(w, v) = 0.

Thus, we have |f | ≤ 0. This contradicts our assumption that f is a flow of positive value. This
contradiction shows that there must be a path in the flow network G from s to t.

Thus, to construct a positive flow in a flow network G, we only need to find a path from the
source to the sink. Many graph algorithms effectively find such a path.

3

2 Residual networks

One may suspect that finding a maximum flow is pretty straightforward: each time we find a
path from the source to the sink, and add a new flow to saturate the path. After adding the new
flow, if any edge becomes saturated, then it seems that the edge has become useless so we delete
it from the flow network. For those edges that are not saturated yet, it seems reasonable to have
a new capacity for each of them to indicate the amount of room left along that edge to allow
further flow through. Thus, the new capacity should be equal to the difference of the original
capacity minus the amount of flow through that edge. Now on the resulting flow network, we
find another path to add further flow, and so forth.

One might expect that if we repeat the above process until the flow network contains no path
from the source s to the sink t, then the obtained flow must be a maximum flow. Unfortunately,
this observation is incorrect.

Consider the flow network with the flow in Figure 1. After deleting all saturated edges, the
sink t is no longer reachable from the source s (see Figure 2). However, it seems that we still

ks kv3 kv4

kv1 kv2 kt

-

-

6 6

2

2

3 4

Figure 2: No s-t path exists after deleting saturated edges

can push a flow of value 2 along the “path” s → v3 → v2 → t, where although we do not have
an edge from v3 to v2, but we still can push a flow of 2 units from v3 to v2 by reducing the
original flow by 2 units on edge [v2, v3]. This, in fact, does result in a larger flow in the original
flow network, as shown in Figure 3.

ks kv3 kv4

kv1 kv2 kt

- -

- -

6 6

?

2/2 4/4

4/4 2/2

7/4 4/2 8/4

Figure 3: A flow larger than the one in Figure 1

Therefore, when a flow f(u, v) is assigned on an edge [u, v], it seems that not only do we
need to modify the capacity of the edge [u, v] to cap(u, v) − f(u, v) to indicate the amount of
further flow allowed through the edge, but also we need to record that a flow of amount f(u, v)
can be pushed along the opposite direction [v, u], which is done by reducing the original flow
along the edge [u, v]. In other words, we need add a new edge of capacity f(u, v) from the vertex
v to the vertex u. Motivated by this observation, we have the following definition.

Definition Given a flow network G = (V,E) and a flow f in G, the residual network Gf =
(V,E′) of G (with respect to the flow f) is a flow network that has the same vertex set V as G.

4

Moreover, for each ordered vertex pair (u, v), if cap(u, v) > f(u, v), then [u, v] is an edge in Gf

with capacity cap(u, v)− f(u, v).

Figure 4 is the residual network of the flow network in Figure 1 with respect to the flow
given in the Figure. It can be clearly seen now that in the residual network, there is a path from
s to t: s→ v3 → v2 → t.

ks kv3 kv4

kv1 kv2 kt

- �

� -

6�

�

2 4

4 2

3 4 4 44

Figure 4: The residual network for Figure 1.

Remark. New edges may be created in the residual network Gf that were not present in the
original flow network G. For example, there is no edge from vertex v3 to vertex v2 in the original
flow network in Figure 1, but in the residual network in Figure 4, there is an edge from v3 to v2.
However, if there is neither an edge from u to v nor an edge from v to u, then, since we must
have cap(u, v) = f(u, v) = 0, there is also no edge from u to v in the residual network. This
implies that the number of edges in a residual network cannot be more than twice of that in the
original flow network. This fact will be useful when we analyze maximum flow algorithms.

Lemma 3 Let G be a flow network and let f be a flow in G. If f∗ is a flow in the residual
network Gf , then the function f+ = f + f∗, defined as f+(u, v) = f(u, v) + f∗(u, v) for all
vertices u and v, is a flow with value |f+| = |f |+ |f∗| in G.

Proof. It suffices to verify that the function f+ satisfies all the three constraints in the
definition of a flow in a flow network. For each pair of vertices u and v in G, we denote by
cap(u, v) the capacity from u to v in the original flow network G, and by capf (u, v) the capacity
in the residual network Gf .

The Capacity Constraint. By the definition of the function f+, we have

cap(u, v)− f+(u, v) = cap(u, v)− f(u, v)− f∗(u, v).

By the definition of capf , cap(u, v)−f(u, v) = capf (u, v). Moreover, since f∗(u, v) is a flow in the
residual network Gf , capf (u, v)− f∗(u, v) ≥ 0. Consequently, we have cap(u, v)− f+(u, v) ≥ 0,
i.e., cap(u, v) ≥ f+(u, v).

The Skew Symmetry. Since f(u, v) and f∗(u, v) are flows in the flow networks G and Gf ,
respectively, we have f(u, v) = −f(v, u) and f∗(u, v) = −f∗(v, u). Thus,

f+(u, v) = f(u, v) + f∗(u, v) = −f(v, u)− f∗(v, u) = −f+(v, u).

The Flow Conservation. Again, since f(u, v) and f∗(u, v) are flows in the flow networks G
and Gf , respectively, we have for all u 6= s, t∑

v∈V
f+(u, v) =

∑
v∈V

f(u, v) +
∑
v∈V

f∗(u, v) = 0.

5

This proves that f+ is a flow in the flow network G. For the flow value of f+, we have

|f+| =
∑
v∈V

f+(s, v) =
∑
v∈V

f(s, v) +
∑
v∈V

f∗(s, v) = |f |+ |f∗|.

This completes the proof of the lemma.

Now we are ready for the following fundamental theorem for maximum flow algorithms.

Theorem 4 Let G be a flow network and let f be a flow in G. The flow f is a maximum flow
in G if and only if the residual network Gf has no positive flow, or equivalently, if and only if
there is no path from the source s to the sink t in the residual network Gf .

Proof. The equivalence of the second condition and the third condition is given by Lemma 2.
Thus, we only need to prove that the first condition and the second condition are equivalent.

Suppose that f is a maximum flow in G. If the residual network Gf has a positive flow f∗,
|f∗| > 0, then by Lemma 3, f+ = f + f∗ is also a flow in G with flow value |f | + |f∗|. This
contradicts the assumption that f is a maximum flow in G since |f∗| > 0. Thus, the residual
network Gf has no positive flow.

For the other direction, we assume that f is not a maximum flow in G. Let fmax be a
maximum flow in G. Thus, |fmax| − |f | > 0. Now define a function f− on each pair (u, v) of
vertices in the residual network Gf as follows,

f−(u, v) = fmax(u, v)− f(u, v).

We claim that f− is a valid flow in the residual network Gf .
The function f− satisfies the capacity constraint: since capf (u, v) = cap(u, v)− f(u, v),

capf (u, v)− f−(u, v) = cap(u, v)− f(u, v)− f−(u, v).

Note that f(u, v) + f−(u, v) = fmax(u, v). Since fmax is a flow in G, cap(u, v)− fmax(u, v) ≥ 0.
Consequently, we have capf (u, v)− f−(u, v) ≥ 0, i.e., capf (u, v) ≥ f−(u, v).

The function f− satisfies the skew symmetry condition:

f−(u, v) = fmax(u, v)− f(u, v) = −fmax(v, u) + f(v, u) = −f−(v, u).

The function f− satisfies the flow conservation condition: for all u 6= s, t, we have∑
v∈V

f−(u, v) =
∑
v∈V

fmax(u, v)−
∑
v∈V

f(u, v) = 0.

Thus, f− is a valid flow in the residual network Gf . Moreover, since we have

|f−| =
∑
v∈V

f−(s, v) =
∑
v∈V

fmax(s, v)−
∑
v∈V

f(s, v) = |fmax| − |f | > 0,

we conclude that the residual network Gf has a positive flow.
This completes the proof of the theorem.

6

Algorithm. Ford-Fulkerson
Input: a flow network (G, s, t)
Output: a maximum flow f in G

1. for (each pair (u, v) of vertices in G) f(u, v) = 0;

2. construct the residual network Gf ;

3. while (there is a positive flow in Gf) do

construct a positive flow f∗ in Gf ;

let f = f + f∗ be the new flow in G;

construct the residual network Gf .

Figure 5: Ford-Fulkerson’s method for maximum flow

Theorem 4 suggests a classical method (called Ford-Fulkerson’s method), described in Fig-
ure 5 for constructing a maximum flow in a given flow network.

According to Lemma 2, there is a positive flow in the residual network Gf if and only if there
is a directed path from the source s to the sink t in Gf . Such a directed path can be found by
a number of efficient graph search algorithms. Thus, the condition in the while loop in step 3
in the algorithm Ford-Fulkerson can be easily checked. Theorem 4 guarantees that when the
algorithm halts, the obtained flow is a maximum flow.

The only problem left is how we construct a positive flow in a given residual network Gf .
In order to make the algorithm efficient, we need to adopt a strategy that constructs a positive
flow in the given residual network Gf effectively so that the number of executions of the while
loop in step 3 is as small as possible. Many algorithms have been proposed for finding such
a positive flow. In the next section, we describe an important technique, the shortest path
saturation method, for constructing a positive flow given a flow network. We will see that when
this method is adopted, the algorithm Ford-Fulkerson is efficient.

3 Shortest path saturation method

The method of shortest path saturation is among the most successful methods in constructing a
positive flow in the residual network Gf to limit the number of executions of the while loop in
step 3 of the algorithm Ford-Fulkerson, where the length of a path is measured by the number
of edges in the path, so a shortest path is a path with the minimum number of edges.

In the rest discussions, we will assume that the flow network G has n vertices and m edges.
We first briefly describe an algorithm suggested by Edmond and Karp. Edmond and Karp

considered the method of constructing a positive flow for the residual network Gf by finding a
shortest path from s to t in Gf and saturating it. Intuitively, each execution of this process sat-
urates at least one edge from a shortest path from s to t in the residual network Gf . Thus, after
O(m) such executions, all shortest paths from s to t in Gf are saturated, and the distance from
the source s to the sink t should be increased. This implies that after O(nm) such executions,
the distance from s to t should be larger than n, or equivalently, the sink t will become unreach-
able from the source s. Therefore, if we adopt Edmond and Karp’s method to find positive flow
in the residual network Gf , then the while loop in step 3 in the algorithm Ford-Fulkerson is
executed at most O(nm) times. Since a shortest path in the residual network Gf can be found
in time O(m) (using, for example, breadth first search), this concludes that Edmond-Karp’s

7

algorithm finds the maximum flow in time O(nm2).
Dinic proposed a different approach. Instead of finding a single shortest path in the residual

network Gf , Dinic finds all shortest paths from s to t in Gf , then saturates all of them. In the
following, we give detailed description and analysis for Dinic’s approach.

Definition Let (G, s, t) be a flow network. A flow f in G is a shortest saturation flow if
(1) f(u, v) > 0 implies that [u, v] is an edge in a shortest path from s to t in G, and
(2) the flow f saturates every shortest path from s to t in G.

For each vertex v in a flow network G with source s and sink t, denote by dist(v) the length
of (i.e., the number of edges in) the shortest path in G from the source s to v (the distance from
s to v). Similarly, if f is a flow in G, we let distf (v) be the length of the shortest path from s
to v in the residual network Gf .

Lemma 5 Let G be a flow network with source s and sink t, and let f be a shortest saturation
flow in G. Then dist(t) < distf (t).

Proof. First we note that if a vertex v is on a shortest path P from the source s to a vertex
w in G, then the subpath of P from s to v is a shortest path from s to v. We first prove the
following claim:

Claim. Let [v, w] be an edge in the residual network Gf , then dist(w) ≤ dist(v) + 1. Moreover,
if [v, w] is not an edge in the original flow network G, then dist(w) < dist(v) + 1.

Proof of the Claim. If [v, w] is an edge in G, then since any shortest path from s to v
plus the edge [v, w] is a path from s to w, whose length cannot be smaller than dist(w), we have
dist(w) ≤ dist(v) + 1.

If [v, w] is not an edge in G, then cap(v, w) = 0. Since [v, w] is an edge in the residual
network Gf , by the definition of edges in Gf , we must have 0 = cap(v, w) > f(v, w). Thus,
f(w, v) > 0. Since f is a shortest saturation flow, only for edges in shortest paths from s to t in
G, f may have positive flow value. Thus [w, v] must be an edge in a shortest path P from s to
t in G. Then the subpath of P from s to w is a shortest path from s to w, and the subpath of
P from s to v is a shortest path from s to v. This gives dist(w) = dist(v)− 1 < dist(v) + 1.

This completes the proof of the claim.

Now we are ready to prove the lemma. Let P = (v0, v1, . . . , vr−1, vr) be a shortest path
in the residual network Gf from the source s to the sink t, where v0 = s and vr = t. Thus,
distf (t) = r, and all [vi, vi+1], 0 ≤ i ≤ r− 1, are edges in the residual network Gf . By the claim
proved above, we have dist(vi+1) ≤ dist(vi) + 1 for all i. Thus,

dist(t) = dist(vr)

≤ dist(vr−1) + 1 ≤ dist(vr−2) + 2 ≤ · · · ≤ dist(v0) + r

= dist(s) + r

= r = distf (t).

This gives dist(t) ≤ distf (t). We prove by contradiction that dist(t) < distf (t). Assume the
contrary that dist(t) = distf (t). Then none of the inequalities “dist(vi+1) ≤ dist(vi) + 1” we
used in the above derivation can be a strict inequality “dist(vi+1) < dist(vi) + 1”’. By the claim
proved above, [vi, vi+1] must be an edge in the original flow network G for all 0 ≤ i ≤ r − 1.

8

But this would imply that the path P = (v0, v1, . . . , vr−1, vr) of length r is also a shortest path
in the original flow network G (under the assumption dist(t) = distf (t) = r). However, since
f is a shortest saturation flow in G, at least one [vi, vi+1] of the edges in the path P should be
saturated by f , i.e., f(vi, vi+1) = cap(vi, vi+1), but this would imply that [vi, vi+1] is not an edge
in the residual network Gf , contradicting the fact that P is a path in Gf . This contradiction
proves that we must have dist(t) < distf (t).

Now we are ready to discuss how the shortest path saturation method is applied to the
algorithm Ford-Fulkerson.

Theorem 6 If in each execution of the while loop in step 3 in the algorithm Ford-Fulkerson,
we construct a shortest saturation flow f∗ for the residual network Gf , then the number of
executions of the while loop is bounded by n− 1.

Proof. Suppose that f∗ is a shortest saturation flow in the residual network Gf . By Lemma 5,
the distance from s to t in the residual network (Gf)f∗ (of Gf with respect to f∗) is at least 1
plus the distance from s to t in the original residual network Gf . Note that the residual network
(Gf)f∗ of Gf with respect to f∗ is the residual network Gf+f∗ of the original flow network G
with respect to the new flow f + f∗. This can be easily verified by the following relation:

capf (u, v)− f∗(u, v) = cap(u, v)− (f(u, v) + f∗(u, v)) = cap(u, v)− [f + f∗](u, v).

Thus, capf (u, v) > f∗(u, v) if and only if cap(u, v) > [f + f∗](u, v), or equivalently, [u, v] is an
edge in (Gf)f∗ if and only if it is an edge in Gf+f∗ .

Therefore, the distance from s to t in the current residual network Gf is at least 1 plus the
distance from s to t in the residual network Gf in the previous execution of the while loop.
Since before the while loop, the distance from s to t in Gf = G is at least 1 (the source s
and the sink t are distinct in G), we conclude that after n − 1 executions of the while loop,
the distance from s to t in the residual network Gf is at least n. This means that the sink t
is not reachable from the source s in the residual network Gf . By Theorem 4, the algorithm
Ford-Fulkerson stops with a maximum flow f .

4 Dinic’s algorithm

By Theorem 6, what is left is to construct a shortest saturation flow for the residual network
Gf . By the definition, a shortest saturation flow saturates all shortest paths from s to t and
has positive value only on edges on shortest paths from s to t. Thus, constructing a shortest
saturation flow can be split into two steps: (1) finding all shortest paths from s to t in Gf , and
(2) saturating all these paths.

Since there can be too many (up to 2cn for some constant c > 0) shortest paths from s to
t, it is infeasible to enumerate all of them. Instead, we construct a subnetwork L0 in Gf , the
layered network, that contains exactly those edges contained in the shortest paths from s to t.

The layered network L0 of Gf can be constructed using a modified breadth first search process,
as given in Figure 6, where Q is a queue that is a data structure serving for “first-in-first-out”.

Stage 1 of the algorithm Layered-Network is a modification of the standard breadth first
search process. The stage assigns a value dist(v) to each vertex v, which equals the distance
from the source s to v, and includes an edge [v, w] in L0 only if dist(v) = dist(w) − 1. The
difference of this stage from the standard breadth first search is that for an edge [v, w] with

9

Algorithm. Layered-Network
Input: the residual network Gf = (Vf , Ef)
Output: the layered network L0 = (V0, E0) of Gf

Stage 1. {constructing all shortest paths from s to each vertex}
1. V0 = ∅; E0 = ∅;
2. for all vertices v in Gf do dist(v) =∞;
3. dist(s) = 0; Q← s;
4. while (dist(t) ==∞ or t is in the queue Q) do

v ← Q;
for (each edge [v, w])

if (dist(w) =∞)
Q← w; dist(w) = dist(v) + 1;
V0 = V0 ∪ {w}; E0 = E0 ∪ {[v, w]};

else if (dist(w) = dist(v) + 1) E0 = E0 ∪ {[v, w]};

Stage 2. {deleting vertices not in a shortest path from s to t}
5. let Lr

0 be L0 with all edge directions reversed;

6. perform a breadth first search on Lr
0, starting from t;

7. delete the vertices v from L0 if v is not marked in step 6.

Figure 6: Construction of the layered network L0

dist(v) = dist(w) − 1, even if the vertex w has been in the queue Q, we still include the edge
[v, w] in L0 to record the shortest paths from s to w that contain the edge [v, w]. Therefore,
after stage 1, for each vertex v, exactly those edges contained in shortest paths from s to v are
included in the network L0 = (V0, E0).

Stage 2 of the algorithm is to delete from L0 all vertices (and their incident edges) that are
not in shortest paths from the source s to the sink t. Since L0 contains only shortest paths from
s to each vertex and every vertex in L0 is reachable from s in L0, a vertex v is not contained
in any shortest path from s to t if and only if t is not reachable from v in the network L0,
or equivalently, v is not reachable from t in the reversed network Lr

0. Step 6 in the algorithm
identifies those vertices that are reachable from t in Lr

0, and step 7 deletes those vertices that
are not identified in step 6.

Therefore, the algorithm Layered-Network correctly constructs the layered network L0 of
the residual network Gf . By the well-known analysis for the breadth first search process, the
running time of the algorithm Layered-Network is bounded by O(m).

Given the layered network L0, Dinic’s algorithm for saturating all shortest paths from s to
t in L0 (thus in Gf) is very simple, and can be described as follows. Starting from the vertex s,
we follow the edges in L0 to find a maximal path P of length at most dist(t). Since the network
L0 is layered and contains only edges in the shortest paths from s to t in Gf , the path P can be
found in a straightforward way (i.e., at each vertex, simply follow an arbitrary out-going edge
from the vertex). Thus, the path P can be constructed in time O(dist(t)) = O(n). Now if the
ending vertex is t, then we have found a path from s to t. We trace back the path P to find
the edge e on P with minimum capacity c. Now we can push c amount of flow along the path
P . Then we delete the edges on P that are saturated by the new flow. Note that this deletes at
least one edge from the layered network L0. On the other hand, if the ending vertex v of P is not
t, then v must be a ”deadend”. Thus, we can delete the vertex v (and all incoming edges to v).
In conclusion, in the above process of time O(n), at least one edge is removed from the layered

10

network L0. Thus, after at most m such processes, the vertices s and t are disconnected, i.e., all
shortest paths from s to t are saturated. This totally takes time O(nm). A formal description
for this process is given in Figure 7.

Algorithm. Dinic-Saturation
Input: the layered network L0

Output: a shortest saturation flow f∗ in Gf

1. while (there is an edge from s in L0) do

find a path P of maximal length from s in L0;

if (P leads to t) saturate P and remove the saturated edges;

else delete the last vertex of P from L0.

Figure 7: Dinic’s algorithm for a shortest saturation flow

For completeness, we present in Figure 8 the complete Dinic’s algorithm for constructing a
maximum flow in a given flow network.

Algorithm. MaxFlow-Dinic
Input: a flow network (G, s, t)
Output: a maximum flow in (G, s, t)

1. for (each pair (u, v) of vertices in G) f(u, v) = 0;

2. construct the residual network Gf ;

3. while (there is a positive flow in Gf) do

call Layered-Network to construct the layered network L0 for Gf ;

call Dinic-Saturation on L0 to construct a shortest saturation flow f∗ in Gf ;

f = f + f∗; and construct the residual network Gf ;

4. return(f).

Figure 8: Dinic’s algorithm for maximum flow

Theorem 7 Dinic’s maximum flow algorithm runs in time O(n2m).

Proof. Theorem 6 claims that the while loop in step 3 in the algorithm is executed at most
n − 1 times. In each execution of the loop, constructing the layered network L0 by Layered-
Network takes time O(m). Constructing the shortest saturation flow f∗ in Gf from the layered
network L0 by Dinic-Saturation takes time O(nm). All other steps in the loop takes time at
most O(n2). Therefore, the total running time for the algorithm MaxFlow-Dinic is bounded
by O(n2m).

11

