CSCE 629-601 Analysis of Algorithms

Fall 2022
Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse. tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm—5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Course Notes. Graph Matching

Given a graph G, a matching M in G is a subset of edges in G such that no two edges in M
share a common end. The GRAPH MATCHING problem is to find a maximum matching (i.e., a
matching with the maximum number of edges) in a given graph.

1 Augmenting paths

Let M be a matching in a graph G = (V, E). A vertex v is matched (with respect to the matching
M) if v is an endpoint of an edge in M, otherwise, the vertex is unmatched.

Definition Let M be a matching in a graph G. An augmenting path (with respect to M) is
a simple path P = (ug,u1,...up) in G, with uy and wuj being unmatched, and the edges going
alternatively between edges not in M and edges in M.

By the definition, an augmenting path must start and end at edges not in M. Therefore,
the length (i.e., the number of edges) of an augmenting path is always odd.

Figure 1 shows a graph G and a matching M in G, where heavy lines [v1, v4] and [ve, v5] are
edges in the matching M and light lines are edges not in M. The path (vg, va, v5,v1, V4, v7) is an
augmenting path. There are also shorter augmenting paths, such as the path (vg,v3) consisting
of the single edge [vg, v3] and the path (vs, vs, va, vg).

Figure 1: Matching and augmenting paths

Recall that the symmetric difference of two sets A and B is defined as AAB = (A\B)U(B\A).
That is, AAB consists of the elements that belong to exactly one of A and B. If we regard an
augmenting path P with respect to a matching M in the graph G as a set of edges, then PAM

is the set of edges obtained from M by replacing all edges in P N M with all edges in P\ M.
Thus, the number of edges in PAM is 1 plus that in M.
This is straightforward to verify the following lemma.

Lemma 1 Let M be a matching in a graph G and let P be an augmenting path w.r.t. M in G,
then PAM is also a matching in the graph G.

The following theorem serves as a fundamental theorem in the study of graph matching and
graph matching algorithms.

Theorem 2 Let G be a graph and let M be a matching in G. The matching M is the mazimum
if and only if there is no augmenting path w.r.t. M in the graph G.

PROOF. We prove the following equivalent statemet: M is not a mazimum matching if and
only if there is an augmenting path w.r.t. M in the graph G.

Suppose that there is an augmenting path P w.r.t. M in the graph G. By Lemma 1,
M' = PAM is also a matching in G in which the number of edges is 1 plus that in M.
Therefore, M is not a maximum matching.

Conversely, suppose that the matching M is not maximum. Let My be a matching larger
than M. Consider the graph MyAM that consists of the edges in G that belong to exactly one
of My and M. No vertex in MgAM has degree larger than 2. In fact, if a vertex v in MgAM is
incident to three edges, then at least two of the edges incident to v belong to the same matching,
which is either M or My, contradicting the definition that a matching does not contain two edges
sharing a common end. Therefore, each component C' of MyAM must be either a simple path,
or a simple cycle. If the component C' is a cycle, then the number of edges in C N M and the
number of edges in C' N My must be equal, because the cycle C' must traverse the edges in M
and M alternatively and no two edges in a matching share a common end. If C is a simple
path, then the number of edges in C'N M can be either larger than, or smaller than, or equal to
the number of edges in C'N My. However, since the matching My is larger than the matching
M, there are more edges in (MoAM) N My than that in (MyAM) N M. This means that there
must be at least one component C” of MyAM that is a simple path with more edges in My than
that in M. Because the edges in C’ must go alternatively between edges in My and edges in M,
the simple path C’ must start and end with edges in My (thus not in M). Therefore, C’ must
be an augmenting path w.r.t. M. This completes the proof of the theorem. Ll

Based on Theorem 2, a general graph matching algorithm can be derived. The algorithm
is given in Figure 2. The time complexity of the algorithm depends on how efficiently we can
construct an augmenting path for a given matching.

Algorithm. Matching
Input: a graph G = (V, E)
Output: a maximum matching M in G

1. M =0
2. while (there is an augumenting path P w.r.t. M in G) do
M = MAP.

Figure 2: General algorithm for graph matching

2 Matching in bipartite graphs

Although the GRAPH MATCHING problem on general graphs can be solved in polynomial time,
the known algorithms for the problem are rather complicated and are out of the scope of the
current notes. Instead, here we present an algorithm for the GRAPH MATCHING problem on
a special class of graphs, the bipartite graphs. We will explain how augmenting paths can be
constructed for a matching in a bipartite graph.

Definition A graph G = (V, E) is bipartite if the vertex set V' of G can be partitioned into two
disjoint subsets V' = V3 UVs such that every edge in G has one end in V; and the other end in V5.

The bipartiteness of a graph can be tested using a standard graph traversing algorithm such
as depth first search or breadth first search, which try to color the vertices of the given graph
by two colors such that no two adjacent vertices are colored with the same color. Obviously, a
graph is bipartite if and only if it can be colored in this way with two colors, which also implies
that a bipartite graph G contains no cycles of odd length.

Let M be a matching in a bipartite graph G. The idea of constructing an augmenting path
w.r.t. M is fairly natural: we pick each unmatched vertex vy, and try to find an augmenting
path starting from vg. For this, we perform a process similar to breadth first search, starting
from the vertex vg. The vertices encountered in the search process are classified into odd-level
vertices and even-level vertices, depending upon their distance to the vertex vy in the search
tree, assuming that the vertex vy is at level 0. For an even-level vertex v, the process tries to
extend the augmenting path by adding an edge not in M. The vertex v may be incident on
several edges not in M and we do not know which is the one we want. Thus, we record all of
them — just as in breadth first search we record all unvisited neighbors of the current vertex
v. For an odd-level vertex w, the process either concludes with an augmenting path (when w
is unmatched) or tries to extend the augmenting path by adding an edge in M (note that if w
is a matched vertex then there is a unique edge in M that is incident on w). Note that in case
of an odd-level vertex w, the search process is different from the standard breadth first search:
the vertex w may have several unvisited neighbors, but we only record the one that matches w
in M and ignore the others.

The drawback of the above process is that if the starting vertex vg is not an end of an
augmenting path, then the process will fail and have to try other unmatched vertices. This
wastes time. Instead, we will start from all unmatched vertices, and extend the paths from
them in the manner as described above. However, once we find out that two of these paths are
connected to make an augmenting path, we stop with the augmenting path.

A formal description of this search process is given in Figure 3.

According to the algorithm, each vertex v is assigned a level number lev(v) > 0 such that
either v is an unmatched vertex and lev(v) = 0, or v has a vertex dad(v) at level lev(v) — 1 as
its parent. In particular, if lev(v) is odd, then the edge [dad(v),v] is an edge not in M while if
lev(v) is even then v is the unique child of its parent dad(v) and the edge [dad(v),v] is an edge
in M. The level is also used to record whether a vertex v has been visited in the process. A
vertex v is unvisited if and only if lev(v) = —1.

The algorithm Bip-Augment builds a leveled hierarchy H, starting from level 0 that consists
of all unmatched vertices. Each vertex w at a level larger than 0 has a parent at level lev|w] —1,
given by dad[w]. Therefore, starting from a vertex w in the hierarchy H, we can trace by
following the array dad[+| a (unique) path from w to an unmatched vertex at level 0.

Algorithm. Bip-Augment
Input: a bipartite graph G and a matching M in G

1. Q@ =0;\\ Q is a queue
2. for (each vertex v) do lev[v] = —1;
3. for (each unmatched vertex v) do { lev[v] = 0; Q < v; }
4. while (Q # 0) do
u < Q;
4.1 if (lev[u] is even)
for (each edge [u,w]) do
41.1 if (levjw] = —1)
levjw] =levlu] + 1; dad[w] =u; Q + w;
4.1.2 else if (lev[w] = lev[u]) an augmenting path is found; stop;
4.2. else \\ lev[u] is odd
let [u, w] be the edge in M;
4.2.1 if (levjw] = —1)
leviw] = lev[u] + 1; dadw] =u; Q + w;
4.2.2 else \\ lev[w] = lev[u]
an augmenting path is found; stop;

5. return(’no augmenting path in G.).

Figure 3: Finding an augmenting path in a bipartite graph

Theorem 3 On a bipartite graph G and a matching M in G, the algorithm Bip-Augment
stops at step 4.1.2 or 4.2.2 if and only if there is an augmenting path in G with respect to M.

PrOOF. We first show that for an odd-level vertex u, if we reach step 4.2.2, then we must
have lev[w] = lev[u], where [u,w] is an edge in M. Because of step 4.2.1, lev[w] # —1 if we
are at step 4.2.2. Also note that lev[w] # 0 since w is a matched vertex. If levw] > lev]u],
then w must already have a parent dad[w] # wu at level lev[u] and [dad[w], w] is an edge in M,
contradicting the assumption that [u, w] is an edge in M. Now assume lev[w] < lev]u]. If lev[w]
is even then since w is matched, lev[w] > 0 so [dad[w], w] is an edge in M and the vertex dad[w]
is at level lev[w] — 1 < lev[u]. If lev[w] is odd then w is matched with its unique child at level
levw] + 1 < lev[u] (this is because both lev[w] and lev[u] are odd). Thus, in either case, we
would get a contradiction that w is matched with a vertex that is not u. In consequence, we
must have lev[w] = lev[u] if we are at step 4.2.2.

Thus, if the algorithm Bip-Augment stops at step 4.1.2 or 4.2.2, we must encounter an edge
[u, w] with lev[u] = lev[w]. If lev]u] is even, then the edge [u,w] is not in M because u is either
unmatched and at level 0 or matched with its parent at level lev[u] — 1. If lev[u] = lev[w] = 0,
then the single edge [u,w] is an augmenting path w.r.t. M. If lev[u] = lev[w] > 0, then both
edges [dad[u],u] and [dad[w],w] are in M, and by following the array dad[+|, we can go from
u and from w to get two paths P, and P,, respectively, that go alternatively between edges
in M and edges not in M. Note that the paths P, and P, cannot share a common vertex v:
otherwise, the two subpaths from u to v and from w to v, respectively, plus the edge [u, w] would
give a cycle of odd length in the graph G, contradicting the fact that the graph G is bipartite.
Thus, the two paths P, and P, must be disjoint and ended at two different unmatched vertices

at level 0. Now these two paths plus the edge [u,w] give an augmenting path w.r.t. M.

On the other hand, if lev[u] is odd, then the edge [u,w] is in M, and both edges [dad[u], u]
and [dad[w],w] are not in M. By following the array dad[*], we can go from u and from w to get
two disjoint paths P, and P,, respectively, that go alternatively between edges not in M and
edges in M, and end at two different unmatched vertices at level 0 (here again the disjointness
of the paths P, and P, is because of the bipartiteness of the graph G). These two paths plus
the edge [u,w] in M give an augmenting path w.r.t. M.

This proves that if the algorithm Bip-Augment stops at step 4.1.2 or 4.2.2, then there is an
augmenting path in G w.r.t. M. Moreover, the above discussion explained how the augmenting
path could be constructed using the array dad[+] in this case.

Now we prove that if there is an augmenting path P w.r.t. M, then the algorithm Bip-
Augment must stop at step 4.1.2 or step 4.2.2 (and construct an augmenting path). For this,
we only need to prove that there is an augmenting path P that contains an edge [u, w] for which
the vertices u and w get their level numbers assigned by the algorithm satisfying lev[u] = lev[w]
and the edge is caught at step 4.1.2 or step 4.2.2 by the algorithm.

Let P = (v1,v2,...,v9;) be a shortest augmenting path, i.e., an augmenting path with the
fewest edges among all augmenting paths. So P starts and ends at unmatched vertices v; and
ok, respectively, which are at level 0 in the algorithm. Now trace the path P in the leveled
hierarchy H, starting from the vertex v; at level 0. Since the path P has to go back to the
vertex v that is also at level 0, there must be an edge [v;,v;+1] in the path P such that
lev[v;] > lev[vi+1]. Without loss of generality, assume that [v;, v;41] is the first such an edge in
P. We show that we must have lev]v;] = lev[vit1].

If [vi,vit1] is an edge in M, then lev[v;] is odd. Note that if lev[v;41] = —1 at the time
when we examine the edge [v;,v;+1] at step 4.2 of the algorithm, then step 4.2.1 would set
lev[viy1] = lev[v;] + 1 > lev[v;], contradicting our assumption that lev[v;] > lev[v;y1]. Thus, we
must have lev[v;y1] # —1. Now, as we have shown in the first paragraph in this proof, in this
case, we will reach step 4.2.2 and the equality lev[v;] = lev[v;11] holds true.

The only case left is that [v;, v;1+1] is an edge not in M and lev[v;] > lev[vi4+1]. In this case,
lev[v;] is even and lev[v;] > 0. The level number lev[v;;1] cannot be even: otherwise, we would
have lev[v;] > lev[vit1] + 2. In this case, when vertex v;11 is examined at step 4.1, the edge
[vit1,v;] would make the vertex v; to have a level number bounded by lev[v;y1] + 1 < lev|v].
Thus, lev[v;4+1] must be odd. Let P’ be the path from an unmatched vertex v" at level 0 to the
vertex v; 41, obtained by tracing the array dad[*] from v;11. Then, because lev[v;] > lev]vi11],
the path P’ plus the path (viy1,vit2,...,v9,) would give a shorter augmenting path w.r.t. M,
contradicting the assumption that P is a shortest augmenting path.

Therefore, we must have lev[v;] = lev[v;y1]. Moreover, as shown above, if [v;,v;11] is an
edge in M, then lev[v;] is odd, so that the edge [v;,v;+1] must be caught by step 4.2.2, and
if [v;,v;41] is an edge not in M, then lev[v;] is even, and the edge [v;, v;y1] is caught by step
4.1.2. In conclusion, if there is an augmenting path w.r.t. M, then an augmenting path will be
constructed by step 4.1.2 or step 4.2.2 of the algorithm.

This completes the proof of the lemma.]

Based on Theorem 2, the algorithm Matching in Figure 2, the algorithm Bip-Augment
in Figure 3, and Theorem 3, an algorithm can be developed for the GRAPH MATCHING problem
on bipartite graphs, as given in the following theorem.

Theorem 4 The GRAPH MATCHING problem on bipartite graphs can be solved in time O(nm).

PRrROOF. We can use an array M[1..n] to represent a matching in the graph such that M[u] = w
if and only if [u,w] is an edge in the matching M. Thus, checking whether an edge is in the
matching, adding an edge to the matching, and deleting an edge from the matching can all be
done in constant time.

The algorithm Bip-Augment processes each edge in the graph at most twice, once from
each end of the edge, and the process on an edge takes constant time. Moreover, once the
algorithm stops at step 4.1.2 or 4.2.2, the found augmenting path can be easily constructed by
tracing the array dad[+] from the two vertices u and w of the current edge [u,w] to vertices at
level 0, as explained in the proof of Theorem 3. Therefore, the running time of the algorithm
Bip-Augment is bounded by O(m).

Mow we consider the algorithm Matching in Figure 2, which solves the GRAPH MATCHING
problem. Each execution of the while loop in step 4 of the algorithm Matching calls the
algorithm Bip-Augment to find an augmenting path and constructs a larger matching for the
graph G. Since a matching in a graph of n vertices contains no more than n/2 edges, we conclude
that the algorithm Matching runs in time O(nm) if it uses the algorithm Bip-Augment as
a subroutine to find augmenting paths. By Theorem 2, the algorithm Matching solves the
GRAPH MATCHING problem in time O(nm). [

