
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm–5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Course Notes 5. The Maximum Bandwidth Path

1 Definitions and problem formulation

We work on weighted graphs. The graphs can be either directed or undirected.
We interpret the weight of an edge [u, v] as the bandwidth of the edge, which gives the

capacity of the edge that allows the amount of flow to go through from vertex u to vertex v.
Let P = {v0, v1, . . . , vm} be a path in a weighted graph G, where for each i, [vi, vi+1] is an

edge in G with bandwidth bw(vi, vi+1). The bandwidth of the path P is defined as

bw(P ) = min
0≤i≤m−1

{bw(vi, vi+1)}.

We will work on the following problem:

Maximum Bandwidth Path (Max-BW).

Given a weighted graph G and two vertices s and t in G, construct a path from s to
t such that the bandwidth of the path is the largest over all paths from s to t.

The Max-BW problem has many applications in computer networks, such as network com-
munication, network flow analysis, and network reliability.

2 Dijkstra’s algorithm

Our first algorithm for solving the Max-BW problem is based on Dijkstra’s algorithm. Dijkstra’s
algorithm has been well-known for solving the Shortest Path problem. We show in this section
that, with some minor changes, Dijkstra’s algorithm can be used to solve the Max-BW problem.

Dijkstra’s algorithm works based on greedy methods. At each stage, it makes a locally
optimal choice in the hope that this choice will lead to a globally optimal solution. Greedy
methods do not always yield globally optimal solutions, but they do for certain problems, in
particular for a number of path problems (e.g., shortest path and maximum bandwidth path).
If you use a greedy algorithm to find globally optimal solution for a problem, you in general
need to give a formal proof to show that the solution constructed by your algorithm is indeed
globally optimal.

Let us start with a review on Dijkstra’s algorithm for path problems. Suppose we want to
find a path from vertex s to vertex t. We start from the source vertex s, and grow a tree T
by repeatedly adding the next (locally) best fringer to the tree T . The process stops when the

1



sink vertex t is included in the tree T . At this point, we claim that the path in the constructed
tree T from s to t is the best path. To implement this, suppose that the vertex set of the graph
G is the integer set {1, 2 . . . , n}. We use three arrays: array status[1..n] to record the status
of the vertices in the graph G (in-tree, fringer, or unseen), array b-width[1..n] to record the
bandwidth of the tree path from s to each vertex when the vertex becomes in-tree or fringer,
and array dad[1, , n] to record the parent of each vertex in the tree T .

The algorithm is given as follows.

Dijkstra-BW(G, s, t)

\\ construct a maximum bandwidth path from s to t in the graph G

1. for(v = 1; v ≤ n; i++)

status[v] = unseen; b-width[v] = 0; dad[v] = 0;

2. status[s] = in-tree; b-width[s] = +∞; dad[s] = -1;

3. for (each edge [s,w])

status[w] = fringer; b-widtht[w] = bw(s,w); dad[w] = s;

4. while (there are fringers)

4.1 pick the fringer v with the largest b-width value; status[v] = in-tree;

4.2 for (each edge [v,w])

4.2.1 if (status[w] == unseen)

status[w] = fringr; dad[w] = v;

b-width[w] = min{b-width[v], bw(v,w)};
4.2.2 else if (status[w] == fringer) & (b-width[w] < min{(b-width[v], bw(v,w)})

dad[w] = v; b-width[w] = min{(b-width[v], bw(v,w)};
5. return the arrays dad[1..n] and b-width[1..n].

The proof for the correctness of the algorithm is very similar to that for the original Dijkstra’s
algorithm for the shortest path problem, which is based on the following lemma.

Lemma 1 Once a vertex v becomes “in-tree”, the path in the tree T from s to v is a maximum
bandwidth path from s to v, whose bandwidth is given by b-width[v].

Proof. We prove the lemma by induction on the number k of vertices in the tree T :
When k = 1, the tree T has a single vertex s, whose bandwidth is +∞ (see step 2). Therefore,

the above claim holds true.
Now suppose that the claim holds true for k ≥ 1, and we consider how the (k + 1)-st vertex

v is added to the tree T . By step 4.1, v is the fringer with the largest b-width value. After v
becomes in-tree, the tree path Psv from s to v consists of the tree path from s to the parent
u = dad[v] of v and the edge [u, v]. The bandwidth of the path Psv is equal to b-width[v].

We prove that the path Psv is a maximum bandwidth path from s to v. Assuming the
contrary that a maximum bandwidth path P ′sv from s to v has its bandwidth strictly larger
than that of Psv, i.e., bw(P ′sv) > bw(Psv) = b-width[v]. Let

P ′sv = {w0, w1, . . . , wh},

where w0 = s and wh = v. Let wb be the first vertex in the path P ′sv that is not in the tree T
(here we assume that the tree T contains k vertices while the vertex v is still a fringer to be
added to the tree). Note that b > 0 so wb−1 is a vertex in the tree T so wb is a fringer. By the
inductive hypothesis, b-width[wb−1] is equal to the bandwidth of a maximum bandwidth path
from s to wb−1. Thus,

b-width[wb] ≥ min{b-width[wb−1], bw(wb−1, wb)} ≥ bw(P ′sv) > bw(Psv) = b-width[v].

The first inequality is because of steps 4.2.1-4.2.2 of the algorithm when the vertex wb−1 was
been added to the tree T and the edge [wb−1, wb] was examined, and the second inequality is

2



because, by the inductive hypothesis, that b-width[wb−1] is not smaller than the bandwidth of
the path {w0, w1, . . . , wb−1} and that {w0, w1, . . . , wb} is a partial path of P ′sv. However, this
contradicts step 4.1 of the algorithm that should have picked the fringer with the largest b-width
value – the vertex wb is also a fringer and it has a b-width value larger than that of v.

This contradiction shows that the path Psv must be a maximum bandwidth path from s to
v. The inductive proof goes through, thus proving the lemma.

By Lemma 1, for each vertex v (not only the sink t), once v becomes in-tree, by following
the array dad[1..n], we can get a maximum bandwidth path from s to v (in the reversed order).

We study the complexity of the algorithm Dijkstra-BW. Steps 1-3 take time O(n). The
while-loop of step 4 is executed at most n − 1 times because each vertex can transition from
fringer to in-tree at most once and once it becomes in-tree, it will never become a fringer again.
Step 4.1 takes time O(n) by linearly scanning the fringer list. Step 4.2 takes time O(n) because
each vertex has at most n− 1 neighbors. In summary, the algorithm runs in time O(n2).

Step 4.2 of the algorithm can be analyzed more precisely. For each vertex v, step 4.2 takes
time O(deg(v)), where deg(v) is the degree of the vertex v (note that each execution of steps
4.2.1-4.2.2 takes time O(1)). Therefore, the total time spent on step 4.2 is actually bounded by

O

(
n∑

v=1

deg(v)

)
= O(m),

where m is the number of edges in the graph G. Thus, indeed, the bottleneck is step 4.1, which
takes time O(n) for each fringer and can be executed O(n) times.

We can improve the algorithm complexity by using a more efficient data structure to handle
the fringers. For example, we can use a 2-3 tree to store the fringers. In this case, we can find
the largest fringer in step 4.1 in time O(log n) instead of O(n). Note that if we do this, then
we also need the insertion operation when a new fringer is added and the deletion operation
when a fringer is removed. We give this revision of the algorithm as follows, where F is the data
structure (e.g., a 2-3 tree) for handling the fringers.

New-Dijkstra-BW(G, s, t)

\\ construct a maximum bandwidth path from s to t in the graph G

1. for(v = 1; v ≤ n; i++)

status[v] = unseen; b-width[v] = 0; dad[v] = 0;

2. status[s] = in-tree; b-width[s] = +∞; dad[s] = -1;

F = ∅;
3. for (each edge [s,w])

status[w] = fringer; b-widtht[w] = bw(s,w); dad[w] = s;

Insert(F, w);

4. while (there are fringers)

4.1 v = Max(F); status[v] = in-tree;

Delete(F, v);

4.2 for (each edge [v,w])

4.2.1 if (status[w] == unseen)

status[w] = fringr; dad[w] = v;

b-width[w] = min{b-width[v], bw(v,w)};
Insert(F, w);

4.2.2 else if (status[w] == fringer) & (b-width[w] < min{(b-width[v], bw(v,w)})
Delete(F, w);

dad[w] = v; b-width[w] = min{(b-width[v], bw(v,w)};
Insert(F, w);

5. return the arrays dad[1..n] and b-width[1..n].

We analyze the new algorithm New-Dijkstra-BW. Steps 1-2 still take time O(n), step 3,
however, now takes time O(n log n) because of the insertion on F. Step 4.1 takes time O(log n)

3



now because Max(F ) and Delete(F, v) take time O(log n). As we discussed above, the total
number of times steps 4.2.1-4.2.2 are executed in the entire execution of the algorithm is O(m),
while each execution of steps 4.2.1-4.2.2 takes time O(log n) because of the Insert(F,w) in step
4.2.1 and Delete(F,w) and Insert(F,w) in step 4.2.2. In conclusion, the total execution time of
step 4 now becomes O(n log n + m log n) = O((n + m) log n) (where n log n is for the time of
step 4.1), which is O(m log n) if we assume the graph G is connected (i.e., m ≥ n− 1).

The algorithm New-Dijkstra-BW is not always better than the algorithm Dijkstra-BW be-
cause m can be as larger as n(n− 1)/2 ≈ n2/2. On the other hand, we can “combine” the two
algorithms to get one that guarantees to be not worse than both of them, i.e., an algorithm
whose running time is O(min{n2,m log n}).

The data structure F does not have to be a 2-3 tree. For example, we can use a max-heap
that also supports Max, Insert, and Delete in O(log n) time per operation. The advantage of a
max-heap over 2-3 trees is its simpler structure. Detailed implementation of a max-heap and its
use in Dijkstra’s algorithm for path problems are left to the students in their course project.

3 Kruskal’s algorithm

Let G be a connected and weighted undirected graph. A spanning tree T of G is a subgraph
of G that is a tree and contains all vertices of G. A minimum spanning tree (resp. maximum
spanning tree) of G is a spanning tree of G whose weight is the smallest (resp. largest) over all
spanning trees of the graph G.

Kruskal’s algorithm has been famous for constructing a minimum spanning tree. With minor
changes, it can be used to construct a maximum spanning tree. In this section, we study how
the Max-BW problem on undirected graphs can be solved based on a maximum spanning tree,
then we use Kruskal’s algorithm to construct a maximum spanning tree thus solve the Max-BW
problem.

We start with the following lemma.

Lemma 2 Let T be a maximum spanning tree of a graph G, and let s and t be any two vertices
in G. Then the tree path from s to t in the tree T is a maximum bandwidth path from s to t.

Proof. Let Pmax be a maximum bandwidth path from s to t in the graph G. We show that
the bandwidth of the unique path Pst from s to t in the maximum spanning tree T is at least
as large as that of Pmax.

If all edges in Pmax are in T , then Pmax = Pst and we have nothing to prove. Thus, assume
that e = [u, v] is the first edge on Pmax that is not in the spanning tree T . Consider the unique
path Puv = {e1, . . . , er} in the tree T from vertex u to vertex v (see Figure 1 for an illustration).
Note that Puv ∪ {e} forms a cycle.

We claim bw(e) ≤ min{bw(ei) | 1 ≤ i ≤ r}. In fact, if bw(e) > bw(ei) for an edge ei in
the path Puv, then T ′ = T − {ei} ∪ {e} would form a spanning tree such that the sum of edge
bandwidths of T ′ is larger than that of T , contradicting the assumption that T is a maximum
spanning tree. Therefore, if we replace the edge e in Pmax by the path Puv in T , we get a path
P ′ whose bandwidth is not smaller than that of Pmax. Moreover, the number of edges in P ′ that
are not in T is 1 fewer than that in Pmax. Note that the resulting path P ′ may not be “simple”,
i.e., some nodes may repeat on the path P ′, but we can easily remove the segments between two
appearances of the same vertex, without decreasing the bandwidth of the path. In any case, we
will get a simple path from s to t, in which the number of edges not in T is 1 fewer than that

4



in Pmax, and whose bandwidth is not smaller than that of Pmax. Repeating the above process
will eventually give us a simple path entirely in T from s and t, whose bandwidth is not smaller
than that of Pmax. Since there is a unique such path P ′′ in the tree T and since the bandwidth
of the path P ′′ is not smaller than that of the maximum bandwidth path Pmax, this path P ′′

from s to t in the maximum spanning tree T must be a maximum bandwidth path from s to t
in the graph G. The lemma is proved

p p p p p p ppppp
p p p p p p p p

p p p p p p p p p p p p pppppppppppp p p p p p p p p p p p p p p p pppp
pppp
pp

s

u

v t

e

e1

e2

e3

(1) Pmax: the dashed lines, (2) T : the solid lines.

t t
@
@t

t
t

t����t
t

HHH t
t

t
H
HHH t

t

Figure 1: The maximum spanning tree and the maximum bandwidth path

By Lemma 2, to construct a maximum bandwidth path from s to t, we can first construct a
maximum spanning tree T , then find the unique tree path in T from s to t. Note that finding the
unique tree path from s to t in the tree T can be done in time O(n), using either DFS or BFS.
Compared to Dijkstra’s algorithm for the Max-BW problem, the advantage of this approach is
that once the maximum spanning tree T is constructed, you can find the maximum bandwidth
path from any source vertex s to any sink vertex t in time O(n), using DFS or BSF. On the
other hand, Dijkstra’s algorithm Dijkstra-BW, as given in the previous section, can only find
maximum bandwidth paths from a fixed source vertex s (to all other vertices).

What that is left is to construct a maximum spanning tree. We use the famous Kruskal’s
algorithm, as given as follows, where we assume that the input graph G is connected.

Kruskal-MST(G)

\\ construct a maximum spanning tree for the graph G

1. sort the edges of G in non-increasing order by their edge weights bw(ei): e1, e2, . . . , em;

2. T = the vertices of G (without any edges);

3. for (i = 1; i ≤ m; i++)

3.1 let ei = [ui, vi];
3.2 if (ui and vi are in different pieces of T)

add ei to T (that connects the two pieces);

4. return (T).

We prove the correctness of Kruskal’s algorithm, starting with the following lemma.

Lemma 3 At any time in the execution of the algorithm Kruskal-MST(G), all the edges in the
set T are entirely contained in a maximum spanning tree of the graph G.

Proof. We prove the lemma by induction on the edge index i for the edge ei in step 3.1.
For i = 0, the set T contains no edges (see step 2), so the lemma holds true.
Now suppose that the lemma holds true for all 0 ≤ h < i, and we consider the i-th edge ei

processed by step 3.1. By induction, after processing the first i−1 edges e1, e2, . . ., ei−1, all the
edges in the set T are entirely contained in a maximum spanning tree Tmax.

5



If the two endpoints ui and vi of the edge ei are in the same piece in T , then by step 3.2, the
edge ei is not added to T so T is unchanged. Thus, after processing the edge ei, we still have
all edges in T contained in the maximum spanning tree Tmax.

If the two endpoints ui and vi of the edge ei are in different pieces in T but the edge ei is
in the maximum spanning tree Tmax, then the algorithm adds the edge ei to T . In this case, we
still have all edges in T contained in the maximum spanning tree Tmax.

The remaining case is that the two endpoints ui and vi of the edge ei are in different pieces
in T but the edge ei is not in the maximum spanning tree Tmax. Then the graph Tmax ∪ {ei}
contains a cycle C = {e′1, . . . , e′r, ei}, where e′1, . . ., e

′
r are edges in Tmax. See Figure 2.

p p p p p p p
p p p p p

ui

vi

ei

e′1

e′2

e′3

The maximum spanning tree Tmax: the solid lines.

t t
@
@t

t
t

t����t
t

H
HH t

t
t

HH
HH t

t

Figure 2: The correctness of Kruskal’s algorithm

Since ui and vi are not in the same piece in T , there must be an edge e′h in {e′1, . . . , e′r} such
that the two endpoints of e′h are in two different pieces in T . We can easily verify:

(1) the edge e′h has not been processed by step 3, yet: otherwise, it would have been added
to T in step 3.2 and the two endpoints of e′h would have been in the same piece in T . As a
result, by step 1, we have bw(e′h) ≤ bw(ei).

(2) the weight bw(e′h) of the edge e′h cannot be smaller than that bw(ei) of the edge ei:
otherwise, the tree T ′ = Tmax−{e′h}∪{ei} would be a spanning tree of G whose weight is larger
than the maximum spanning tree Tmax.

Thus, we must have bw(e′h) = bw(ei), so T ′ = Tmax−{e′h}∪{ei} is also a maximum spanning
tree of G that contains all edges in T (note that the edge e′h is not in T ).

This completes the proof of the lemma.

To prove that the output T of the algorithm Kruskal-MST(G) is a maximum spanning tree
of the graph G, we still need to verify that T is a connected graph (note that by step 2, the
set T contains all vertices of G). But this is easy: suppose that T is not connected. Since the
graph G is connected, there must be an edge ei in G that connects two different pieces in T , but
this is impossible: when the edge ei is processed in step 3.2, the algorithm would have added
the edge ei to T so that the two endpoints of ei cannot be in two different pieces in the final
set T . This contradiction shows that the output T of the algorithm Kruskal-MST(G) must be
a connected graph. This, plus the fact that T contains all vertices of the graph G and that all
edges in T are contained in a maximum spanning tree Tmax, concludes that T by itself is the
maximum spanning tree Tmax of the graph G.

We study the complexity of the algorithm Kruskal-MST(G). Step 1 of the algorithm takes
time O(m logm) = O(m log n) by any optimal sorting algorithm such as MergeSort.

To handle the dynamic changes of the set T , we use three functions: MakeSet(w), Find(w),
and Union(p1, p2), where MakeSet(w) creates a set consisting of a single vertex w (thus, used

6



in step 2 of the algorithm), Find(w) finds the piece of T that contains the vertex w (thus, used
in step 3.2 to check if the two endpoints ui and vi of the edge ei are in the same piece), and
Union(p1, p2) merges two pieces p1 and p2 into a single piece (thus used in step 3.2 when we add
the edge ei to T to connect two pieces in T ).

There has been extensive study on the complexity of the functions MakeSet, Find, and
Union. We will study this in details in our class. For their use for the algorithm Kruskal-MST,
it suffices to know that each of these operations takes time O(log n). Bringing this fact into
the algorithm, we can easily conclude that the algorithm Kruskal-MST runs in time O(m log n)
(note that since G is connected, m ≥ n− 1).

We close this section by the following algorithm that solves the Max-BW problem for
weighted undirected graphs using Kruskal’s algorithm. By the above discussions, the algorithm
Kruskal-BW(G, s, t) runs in time O(m log n) and correctly constructs a maximum bandwidth
path from s to t in the graph G.

Kruskal-BW(G, s, t)
\\ construct a maximum bandwidth path from s to t in the graph G

1. T = Kruskal-MST(G);
2. Use DFS or BFS to construct the path P in T from s to t;
3. return(P).

7


