
CSCE 629-601 Analysis of Algorithms

Fall 2022

Instructor: Dr. Jianer Chen Teaching Assistant: Vaibhav Bajaj
Office: PETR 428 Office: EABC 107B
Phone: (979) 845-4259 Phone: (979) 739-2707
Email: chen@cse.tamu.edu Email: vaibhavbajaj@tamu.edu
Office Hours: MWF 3:50pm–5:00pm Office Hours: T; 2pm-3pm, TR: 4pm-5pm

Course Notes #4. Hashing

1 Preliminaries

Let U be a universal set of elements that are of interest to our applications. Let m ≥ 0 be a
fixed integer. We call a function h : U → [0..m− 1] a hash function from U to [0..m− 1].

Each hash function h gives a hashing structure, as follows: we prepare an array Hh[0..m−1]
of doubly linked lists such that an element x in U will be “hashed” into the linked list Hh[h(x)].
Therefore, the SEARCH, INSERT, and DELETE operations based on the hashing structure Hh

can be implemented as follows:

• SEARCH(x): search the element x ∈ U in the list Hh[h(x)].

• INSERT(x): insert the element x ∈ U into the head of the list Hh[h(x)].

• DELETE(px): delete the node pointed by the pointer px in the structure Hh.

The operation INSERT(x) takes time O(1) because we always insert the new node into the head
of the list Hh[h(x)]. The operation DELETE(px) also takes time O(1) since the node to be
deleted can be accessed directly by the pointer px and all lists in the structure Hh are doubly
linked (also note that the operation DELETE(px) does not even have to know the element x).
Thus, the only non-trivial operation is SEARCH(x), whose running time is O(d+ 1), where d is
the number of nodes before the node containing the element x in the list Hh[h(x)] (in caes x is
not in Hh, d is the total number of nodes in the list Hh[h(x)]).

Note that there are other possible versions of INSERT and DELETE. For example, the
operation INSERT(x) may require to either insert x when x does not exist in the current
structure Hh or simply report the existence of x in Hh. Similarly, DELETE may have the
form DELETE(x), where x ∈ U , which either deletes the node containing the element x in the
list Hh[h(x)] or reports the nonexistence of x in Hh. Each of these extensions is equivalent
to a SEARCH(x) operation followed possibly by an INSERT/DELETE operation given in the
above list. Thus, we only need to focus on the three “basic” operations listed above, and the
complexity of the extended versions of the operations will follow easily.

2 Complexity based on ideal hash functions

We say that a hash function h is ideal if it hashes each element x of U into each integer i,
0 ≤ i ≤ m− 1, with a probability 1/m.1

1Perhaps the name “perfect hash function” sounds more proper. However, “perfect hash function” has its
formal definition that is different from what we wanted to mean here and has become standard in the hashing

1

Since both INSERT and DELETE take time O(1), we only need to consider the operation
SEARCH(x). In this section, we study the complexity of SEARCH based on the assumption
that we have an ideal hash function h. Let Xn = {x1, x2, . . . , xn} be a subset of n elements in
U that have been placed in the structure Hh, in that order. There are two difference cases.

Case 1. The element x is not in Hh.
In this case, we need to search the entire listHh[h(x)]. Thus, the running time of SEARCH(x)

is O(d+ 1), where d is the number of nodes in the list Hh[h(x)] (the number 1 in the expression
makes the case when the list Hh[h(x)] is empty meaningful). The worst case can be very bad:
if all elements in Xn are in the list Hh[h(x)], then the search time will be O(n). Note that
this situation can happen even we assume that the hash function h is ideal. For example, if
|U | > nm, then there must be an index k such that more than n elements in U are hashed into
Hh[k]. Therefore, the worst situation occurs if Xn happens to be such n elements and h(x) = k.

We are more interested in the “average” length of the list Hh[k] for a general index k. For
this, we define for each element xi in Xn, 1 ≤ i ≤ n, the following random variable:

Yk,i =

{
1 if h(xi) = k

0 if h(xi) 6= k

Based on this, we can define a random variable Y (k) for the length of the list Hh[k] as Y (k) =∑n
i=1 Yk,i.

Lemma 1 For each fixed k, 0 ≤ k ≤ m− 1, the expected length of the list Hh[k] is n/m.

Proof. Since the hash function h is ideal, for a fixed k, we have E[Yk,i] = Pr[Yk,i = 1] = 1/m
for each element xi. By the linearality of the expectation, we have

E[Y (k)] = E

[
n∑

i=1

Yk,i

]
=

n∑
i=1

E[Yk,i] = n/m.

Thus, the expected value for the random variable Y (k) is n/m, which proves the lemma.

In case x is not in Hh, the operation SEARCH(x) takes time O(d + 1), where d is the number
of nodes in the list Hh[k], assuming h(x) = k. By Lemma 1, the expected running time of the
operation SEARCH(x) is O(n/m+ 1).

Case 2. The element x is in Hh.
Now we suppose that the element x under the search is in the hashing structure Hh. Since

for different x in Hh, the search time on x may be different, we make another assumption that
x is any one of the elements {x1, x2, . . . , xn} in Hh with an equal probability, i.e., for each i,
Pr[x = xi] = 1/n. Now for a fixed i, suppose x = xi. Then the running time of SEARCH(x)
is O(d + 1), where d is the total number of nodes that are before xi in the list Hh[k], where
k = h(xi). Consider the following random variables for 1 ≤ j ≤ n:

Zi,j =

{
1 if x = xi, h(xj) = h(x), j > i

0 otherwise

literature. Thus, we adopt to use “ideal hash function” instead.

2

Note that for each j 6= i,

Pr[x = xi, h(xj) = h(x)] = Pr[h(xj) = h(x) | x = xi] · Pr[x = xi] = 1/(nm),

where the equality Pr[h(xi) = h(xj) | x = xi] = 1/m is because on the condition x = xi, h(xj)
is equal to the value h(xi) (= h(x)) with a probability 1/m. Therefore, for each j, we have

E[Zi,j] =

{
1/(nm) if j > i

0 otherwise

The condition {x = xi, h(xj) = h(x), j > i} give exactly the condition that xj is a node before
xi in the list Hh[h(x)]. Thus, when x = xi, Zi =

∑n
j=i+1 Zi,j is the number of nodes before x

in the list Hh[h(x)]. Since Zi,j = 0 for all j if x 6= xi, we have Zi = 0 if x 6= xi. Therefore, if
x is in Hh, Z =

∑n
i=1 Zi would be exactly the number of nodes before x in the linked list that

contains x. The expected value of Z can be easily computed using the linearality of expections:

E[Z] = E

[
n∑

i=1

Zi

]
=

n∑
i=1

E[Zi] =

n∑
i=1

E

 n∑
j=i+1

Zi,j

 =

n∑
i=1

n∑
j=i+1

E[Zi,j]

=
n∑

i=1

n∑
j=i+1

1

nm
=

1

nm

n∑
i=1

(n− i) =
n− 1

2m
<

n

2m
.

In summary, if x is in the hash structure Hh with an equal probability to be each of the
elements in Hh, then SEARCH(x) takes expected time O(1 + n/(2m)).

3 Universal hashing

Fix a set U and an integer m ≥ 0. Let H be a collection of hash functions from U to [0, ,m− 1].
We say that H is a universal hashing if for any two elements x and y in U , there are at most
|H|/m hash functions h that make h(x) = h(y). In other words, if we randomly pick a hash
function h from H, then the probability that h(x) = h(y) is bounded by 1/m.

The discussion in this section requires some familiarity with Number Theory. We will try
to give a presentation that requires the minimum background in Number Theory. Let p be a
prime number. For any integer a, denote by a (mod p) the remainder of a divided by p, and
write a ≡ b (mod p) if |a − b| is divisible by p. The numbers in [0..p − 1] form a field in which
we can apply the operations +, −, ×, and / as normal but “mod p”. In particular, if a ≡ b
(mod p) and c ≡ d (mod p), then (a− c) ≡ (b− d) (mod p).

3.1 Constructing universal hashing

We show how to construct a universal hashing given U and m. The elements in the set U can
be given, without loss of generality, as the integers in [0..|U | − 1]. Let p be a prime that is not
smaller than |U |. Define a collection of hash functions from U to [0..m− 1] as

HU,m = {ha,b,m | 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1}, (1)

where ha,b,m is defined as ha,b,m(x) = ((ax+ b) mod p) mod m.

3

Fix the two elements x and y in U , with x 6= y. Consider the following two sets:

S1 = {(a, b) | 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1} and S2 = {(s, t) | 0 ≤ s, t ≤ p− 1, s 6= t}.

The two elements x and y induce a mapping π from S1 to S2 by

π from (a, b) ∈ S1 to (s, t) ∈ S2: s = (ax+ b) mod p and t = (ay + b) mod p.

Note that the condition s 6= t is ensured by the following fact: if s = t, then a(x−y) (mod p) = 0,
which, with 0 < |x− y| < p, would imply that the prime p is divisible by a with 2 ≤ a ≤ p− 1.

The mapping π from S1 to S2 is actually surjective, i.e., different pairs in S1 are mapped to
different pairs in S2. To see this, suppose the contrary that there are two different pairs (a1, b1)
and (a2, b2) in S1 such that

(a1x+ b1) ≡ (a2x+ b2) (mod p) and (a1y + b1) ≡ (a2y + b2) (mod p).

Subtracting the second from the first, we get

a1(x− y) ≡ a2(x− y) (mod p) i.e., (a1 − a2)(x− y) ≡ 0 (mod p).

Since 0 < |x−y| < p, this implies a1 = a2. Combining this with (a1x+b1) ≡ (a2x+b2) (mod p)
gives b1 = b2, contradicting the assumption that (a1, b1) and (a2, b2) are different pairs in S1.

Note that the number of pairs in S1 is equal to the number of pairs in S2. Thus, the mapping
π is actually a one-to-one mapping between S1 and S2. Therefore, randomly picking a pair (a, b)
in S1 and making a pair (s, t) in S2, where s = (ax+ b) (mod p) and t = (ay+ b) (mod p), can
be regarded as a process of randomly picking a pair (s, t) in S2.

By the definition of the hashing function, ha,b,m(x) = s (mod m) and ha,b,m(y) = t (mod m).
We count the number of pairs (s, t) in S2 such that s ≡ t (mod m). For each s with

0 ≤ s ≤ p − 1, there are dp/me − 1 ≤ (p − 1)/m numbers t such that 0 ≤ t ≤ p − 1, t 6= s,
and s ≡ t (mod m). Therefore, the total number of pairs (s, t) in S2 with s ≡ t (mod m) is
bounded by p(p − 1)/m. Since there is a one-to-one mapping π from the set S1 to the set S2,
the total number of pairs (a, b) in S1 such that π(a, b) = (s, t) with s ≡ t (mod m) is bounded
by p(p − 1)/m. Note that π(a, b) = (s, t) implies s = (ax + b) (mod p), t = (ay + b) (mod p),
and that s (mod m) = ha,b,m(x), t (mod m) = ha,b,m(y). Therefore, the above conclusion
implies that the number of pairs (a, b) in S1 that make ha,b,m(x) = ha,b,m(y) is bounded by
p(p − 1)/m. Since there are totally p(p − 1) pairs in S1, which correspond to p(p − 1) hash
functions ha,b,m, where (a, b) ∈ S1, we conclude that if we randomly pick a pair (a, b) in S1
and make a hash function ha,b,m, then the probability that ha,b,m(x) = ha,b,m(y) is bounded by
(p(p− 1)/m)/(p(p− 1)) = 1/m.

Therefore, for the two elements x and y in U , with x 6= y, if we randomly pick a pair (a, b) in
S1 and use the hash function ha,b,m, then the probability that ha,b,m(x) = ha,b,m(y) is bounded
by 1/m. This proves that the collection in (1) is a universal hashing from the set U to [0..m−1].

3.2 How good is a hash function randomly picked from universal hashing?

Intuitively, a hash function h randomly picked from a universal hashing HU,m is good: for any
two different elements in the set U , the function h causes a collision with a probability bounded
by 1/m. However, this does not imply directly that the same hash function h is good for all
pairs of different elements in U . In this subsection, we show that the same hash function h
randomly picked from the universal hashing HU,m can be expected to be always good.

4

As we have seen early, the most time-consuming operation for hashing is SEARCH(x), which
is proportional to the length of the linked list H[h(x)]. For this, we assume that we have used
the hash function h to distribute all elements of U = {x1, . . . , xn} in the hash table H[0..m− 1],
and that we will next to do a SEARCH(x), where h(x) = k.

Case 1. x is not in U .
For each element xi in U , since h is randomly picked from HU,m, Prob[h(xi) = h(x)] ≤ 1/m.

We define a random variable as follows:

Zx,xi =

{
1 if h(xi) = h(x)

0 otherwise

From this, we have Exp[Zx,xi] = Prob[h(xi) = h(x)] ≤ 1/m.
The length of the list H[k] is Lx =

∑n
i=1 Zx,xi , and the expected value of Lx is

Exp[Lx] = Exp

[
n∑

i=1

Zx,xi

]
=

n∑
i=1

Exp[Zx,xi] ≤
n∑

i=1

(1/m) = n/m.

In conclusion, if x is not in the hash table H[0..m− 1], then the expected time for the operation
SEARCH(x) is bounded by O(n/m).

Case 2. x is in U .
Using the above notations, in this case, the number of elements in U that are in H[k] but

are not x is equal to L′x =
∑

xi 6=x Zx,xi , whose expected value is

Exp[L′x] = Exp

∑
xi 6=x

Zx,xi

 =
∑
xi 6=x

Exp[Zx,xi] ≤
∑
xi 6=x

(1/m) = (n− 1)/m < n/m.

Thus, again the expected time for the operation SEARCH(x) is bounded by O(n/m).

In summary, in all cases, for any given set U of n elements, if we randomly pick a hash function
h in the universal hashing HU,m (note that HU,m depends only on the number of elements in U
but not on the actual set U), then the constructed hash table supports the SEARCH operation
in expected time O(n/m), which is the best possible we can hope.

4 Perfect hashing

So far, our evaluation of hash functions is based on the “expected performance,” i.e., the per-
formance of the function in most cases. However, this does not exclude the possibility that in
some extreme cases (i.e., cases that happen with small probability), the function performs very
badly. An interesting question is whether there are hash functions that always perform well,
even in the worst case. If there are such hash functions, how do we construct them, and how
expensive is the construction? We will study this issue in the current section.

Let A be a set of n elements in the universal set U . A hash function h from the set A to
[0..m− 1] is perfect if no two elements x and y in A cause a collision h(x) = h(y). Of course, in
this case, we must have n ≤ m.

Let p be a prime that is larger than |U |. Recall that the following collection

HU,m = {ha,b,m | 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1}

5

where ha,b,m(x) = ((ax+ b) mod p) mod m, makes a universal hashing from U to [0..m− 1].
We first show that if we allow m to be sufficiently large, then a perfect hashing from A to

[0..m− 1] can be easily constructed, based on the following lemma.

Lemma 2 For a given set A of n elements, if we randomly pick a hash function h from HU,n2,
then the probability that h is a perfect hash function from A to [0..n2 − 1] is larger than 1/2.

Proof. Let x and y be two fixed different elements in A. By the definition of universal hashing
HU,n2 , if we randomly pick a hash function h from HU,n2 , then the probability that h(x) = h(y)
is bounded by 1/n2. Since there are

(
n
2

)
pairs of different elements in A, the probability that

h(x) = h(y) for any two different elements x and y in A is bounded by∑
x,y∈A, x 6=y

Prob[h(x) = h(y)] ≤
∑

x,y∈A, x 6=y

1

n2
=

(
n

2

)
· 1

n2
=
n(n− 1)

2
· 1

n2
<

1

2
.

Therefore, the probability that no two different elements x and y make h(x) = h(y), i.e., the
probability that the function h is perfect, is larger than 1/2.

In particular, Lemma 2 implies that there are (more than one half of the) hash functions in
HU,n2 that are perfect from A to [0..n2 − 1]. Lemma 2 also suggests a randomized algorithm
to find such a perfect hash function: simply repeatedly pick randomly a hash function in HU,n2

until a perfect hash function is found. Note that randomly picking a hash function in HU,n2 can
be implemented using the techniques described in Section 3, and that checking whether a hash
function is perfect is straightforward. By Lemma 2, with a large probability, this randomized
algorithm will find a perfect hash function very quickly.

The drawback of the above construction is m = n2 is too large, which makes the hash
structure very space expensive. In the following, we study how to reduce the size of the hash
table. For this, we first consider hash functions for the set A whose hash table has a size n.

Lemma 3 Suppose that we randomly pick a hash function h from the universal hashing HU,n,
and let ni be the number of elements in A that are hashed into the list H[i], for 0 ≤ i ≤ n− 1.
Then Exp[

∑n−1
i=0 n

2
i] < 2n.

Proof. First note that

n2i = 2 · n
2
i

2
= 2

(
ni(ni − 1)

2
+
ni
2

)
= 2

((
ni
2

)
+
ni
2

)
= 2 ·

(
ni
2

)
+ ni.

Therefore,

Exp

[
n−1∑
i=0

n2i

]
= Exp

[
n−1∑
i=0

(
2 ·
(
ni
2

)
+ ni

)]
= 2 · Exp

[
n−1∑
i=0

(
ni
2

)]
+ Exp

[
n−1∑
i=0

ni

]

The sum
∑n−1

i=0 ni is always equal to n, so Exp[
∑n−1

i=0 ni] = n. Two elements x and y collide by h,
i.e., h(x) = h(y) if and only if x and y are hashed into the same list H[i] for some i. Therefore,∑n−1

i=0

(
ni
2

)
is exactly the number of pairs of elements in A that collide under h. Since the hash

function h was picked randomly from the universal hashing HU,n, by the definition of universal
hashing, two elements in A collide with a probability bounded by 1/n. Now there are

(
n
2

)
pairs

in A, so the expected number of collisions under h is bounded by
(
n
2

)
· (1/n) = (n − 1)/2, i.e.,

Exp[
∑n−1

i=0

(
ni
2

)
] ≤ (n− 1)/2. Summarizing all these, we get Exp[

∑n−1
i=0 n

2
i] ≤ 2n− 1 < 2n.

6

Lemma 3 implies that there are hash functions in HU,n that satisfy
∑n−1

i=0 n
2
i < 2n. Moreover,

based on the study in probability theory (Markov Inequality), there are many hash functions
in HU,n that satisfy, say,

∑n−1
i=0 n

2
i < 3n, which can be found quickly with a large probability

by repeatedly picking a random hash function in HU,n. Note that hash functions satisfying∑n−1
i=0 n

2
i < 3n will also meet our need in the construction of perfect hash functions, with a

slightly larger space expense.
Now we are ready to present our algorithm that constructs a perfect hash function from the

set A of n elements to [0..N − 1], where N < 2n. The algorithm is given below.

Algorithm PerfectHash(A)

1. pick a prime p > |U |;
2. pick a and b with 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1 such that the hash function
ha,b,n(x) = ((ax+ b) mod p) mod n satisfies

∑n−1
i=0 |Xi|2 < 2n, where for all

0 ≤ i ≤ n− 1, Xi is the set of elements x in A such that h(x) = i;
3. for i = 0 to n− 1 do

pick ai and bi with 1 ≤ ai ≤ p− 1, 0 ≤ bi ≤ p− 1 such that the hash
function hai,bi,|Xi|2(x) = ((aix+ bi) mod p) mod |Xi|2 is perfect from
Xi to [0..|Xi|2 − 1];

4. output {(a, b), (a0, b0), . . . , (an−1, bn−1)}.

The existence of the numbers a and b in step 2 of the algorithm is ensured by Lemma 3.
The existence of the numbers ai and bi in step 3, for 0 ≤ i ≤ n − 1, is ensured by Lemma 2.
The result of the algorithm is a collection of n + 1 pairs {(a, b), (a0, b0), . . . , (an−1, bn−1)}. The
hash table is HA[0..N − 1], where N =

∑n−1
i=0 |Xi|2 < 2n, which is the concatenation of the

hash tables from Xi to [0..|Xi|2 − 1] for 0 ≤ i ≤ n − 1 constructed in step 3. In order to make
the hashing function constant-time computable, we will pre-store: (1) the numbers p and n, (2)
the numbers {(a, b), (a0, b0), . . . , (an−1, bn−1)}, and (3) n additional numbers d0, d1, . . ., dn−1,
where di =

∑i−1
h=0 |Xh|2 for 0 ≤ i ≤ n − 1. Note that the subtable HA[di..di+1 − 1], which is of

size |Xi|2, is for the hash table for the set Xi constructed in step 3 of the algorithm. All these
subtables are disjoint in HA[0..N − 1].

For a given element x, the hash function hA for A on the hash table HA[0..N−1] is computed
as follows: (1) compute i = ha,b,n(x) = ((ax+ b) mod p) mod n using the pre-stored numbers a,
b, p, and n; (2) compute k = hai,bi,|Xi|2(x) = ((aix+ bi) mod p) mod |Xi|2 using the pre-stored
numbers ai, bi, and p, where |Xi| is computed by |Xi| = di+1 − di; (3) let hA(x) = di + k.

Step 1 in the above procedure determines which set Xi the element x belongs to. By
our construction, the hash function hai,bi,|Xi|2(x) is perfect from Xi to [0..|Xi|2 − 1], which
corresponds to the subtable HA[di..di+1− 1] in the hash table HA[0..N − 1]. Thus, step 3 of the
above procedure places x in the hash table HA[0..N − 1] which will not collide with any other
elements in A. In summary, the hash function hA can be computed in constant time, and is
perfect from A to [0..N − 1].

A straightforward implementation of the algorithm PerfectHash takes time O(n2p2), which
is probably not practical (recall that the number p can be very large). On the other hand, as we
remarked early, the hash functions ha,b,m and hai,bi,|Xi|2 for 0 ≤ i ≤ n− 1 can be constructed by
randomly picking the numbers a, b, ai, bi in [0..p−1]. With a large probability, this randomized
process will construct the hash functions in time O(n2). On the other hand, if we adopt this
construction, then the upper bound of the size of the hash table HA[0..N − 1] will be increased
somehow, for example from 2n to 3n. We leave the detailed study of this implementation to the
interested readers.

7

