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Course Notes #1. 2-3 Trees

A set is a collection of elements. All elements of a set are different, which means no set
can contain two copies of the same element. We will assume that elements of a set are linearly
ordered by a relation, usually denoted “<” and read “less than” or “precedes”.

Let S be a set and let u be an arbitrary element of a universal set of which S is a subset.
The fundamental operations occurring in set manipulation include:

• Search(u, S): Is u ∈ S?

• Insert(u, S): Add the element u to the set S.

• Delete(u, S): Remove the element u from the set S.

When the universal set is linearly ordered, the following operations are also important:

• Min(S): Report the minimum element of the set S.

• Split(u, S): Partition the set S into two sets S1 and S2, so that S1 contains all the elements
of S that are smaller than or equal to u, and S2 contains all the elements of S that are
larger than u.

• Splice(S, S1, S2): Assuming that all elements in the set S1 are smaller than any element
in the set S2, form the ordered set S = S1 ∪ S2.

We will introduce a special data structure: 2-3 trees, which represent sets of elements and
support the above set operations efficiently.

Definition A 2-3 tree is a tree such that each non-leaf node has two or three children, and
every path from the root to a leaf is of the same length.

The following theorem can be proved using induction on n, and the proof is left to the reader.

Theorem 1 A 2-3 tree of n leaves has height bounded by log n.

A linearly ordered set of elements can be stored in a 2-3 tree by placing the elements in the
leaves of the tree in such a way that for any non-leaf node w of the tree, all elements stored in
(the leaves of) the first child c1(w) of w are less than any elements stored in the second child
c2(w) of w, and all elements stored in the second child c2(w) of w are less than any elements
stored in the third child c3(w) of w (if w has a third child). The node w also keeps three values
for its three children c1(w), c2(w), and c3(w):
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• k1(w) : the largest element stored in the subtree rooted at c1(w).
• k2(w) : the largest element stored in the subtree rooted at c2(w).
• k3(w) : the largest element stored in the subtree rooted at c3(w) (if c3(w) exists).

Remark. Strictly speaking, the third value k3(w) is not needed. All algorithms can be im-
plemented without the value k3(w), and without increasing the time complexity. However, we
suggest to keep the value k3(w) in implementation, which will make the implementation easier.

1 Searching

The algorithm to search an element in a 2-3 tree is given as follows, where r is the root of the
2-3 tree, and x is the element to be searched in the tree. Note that the algorithm returns ”True”
when the element x is found in the 2-3 tree, and returns ”False” otherwise. Moreover, for a leaf
note w, we have used the value k1(w) to record the value of the element stored in the leaf.

Algorithm Search(r, x)

1. If (r is empty) return "False";

2. If (r is a leaf node) return (k1(r) == x);

3. If (k1(r) >= x) return Search(c1(r), x);

Else If (k2(r) >= x) return Search(c2(r), x);

Else return Search(c3(r), x).

Since the height of a 2-3 tree is O(log n), and the algorithm simply follows a path in the
tree from the root to a leaf, and spends time O(1) on each level, the time complexity of the
algorithm Search is O(log n), where n is the number of leaves in the tree.

2 Minimum and Maximum

Suppose that we want to find the minimum element stored in a 2-3 tree rooted at r. Recall
that in a 2-3 tree the elements are stored in leaf nodes in ascending order from left to right.
Therefore the problem is reduced to going down the tree, always selecting the left most link,
until a leaf node is reached. This leaf node should contain the minimum element stored in the
tree. Evidently, the time complexity of this algorithm is O(log n) for a 2-3 tree with n leaves.

Algorithm Min(r)

1. If (r is empty) return "Empty-Tree";

2. If (r is a leaf) return k1(r);

Else return Min(c1(r)).

Similarly, the maximum element in a 2-3 tree can be found in time O(log n).

3 Insertion

To insert a new element x into a 2-3 tree T rooted at r, we apply a recursive algorithm that
dose two things: (1) insert x into the tree T rooted at r; and (2) report whether this insertion
splits the tree T rooted at r into two 2-3 trees.

If the 2-3 tree T has at most one leaf, then the job is easy: (1) if T has no leaf (i.e., T
represents an empty set), then we simply make a 2-3 tree that consists of a single node, which
is both the root and the leaf of the tree, with a value x. (2) if T has only one leaf of value y,
then the tree T is a single-node tree, inserting x into T makes a two-leaf tree, whose values are
x and y, respectively, and the leaves are ordered properly.
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Now suppose that the 2-3 tree T has a height at least 1 with at least two leaves, then we
proceed at first as if we were searching x in the tree T . However, at the level just above the
leaves, we start our insertion operation recursively. In general, suppose that we want to add a
new child w to a node v in the 2-3 tree T . If v has only two children, we simply make w a new
child of v, placing the children in the proper order and updating the information of the node v.

Suppose, however, that v already has three children v1, v2, and v3. Then w would be the
fourth child of v. We cannot have a node with four children in a 2-3 tree, so we split the node
v into two nodes, which we call v and v′. With the new node v′, we can let the first two of
{v1, v2, v3, w} (in terms of the linear order) be children of v, and let the rest two be children of
v′. Now, the node v′ is the root of a subtree and should be added as a new child to the parent
of v. Thus, the operation now can be recursively done at the level of the parent of v.

One special case occurs when we wind up splitting the root. In that case we create a new
root, whose two children are the two nodes into which the old root was split. This is how the
number of levels in (i.e., the height of) a 2-3 tree increases.

The above discussion is implemented in the following algorithms, where r is the root of the
2-3 tree to which the element x is to be inserted. Note that when the algorithm Insert(r, x)

returns, r becomes the root of the new 2-3 tree.

Algorithm Insert(r, x)

1. If (the tree rooted at r has < 2 leaves)

process directly; return;

2. AddLeaf(r, x, r’);

3. If (r’ != NULL)

create a new node v;

let r and r’ be children of v;

r = v.

The procedure AddLeaf(r,x,r’) above is implemented by the following recursive algorithm,
which inserts a new element x to the 2-3 tree rooted at r. Moreover, if this insertion causes
splitting the node r due to exceeding the number of children, then a new node r′ is created to
take two of the four children from r. Therefore, if r′ is not empty when the procedure returns,
then r and r′, respectively, are the roots of two 2-3 trees of the same height.

Algorithm AddLeaf(r, x, r’) /* the node r is not a leaf */

1. r’ = NULL;

2. If (r is a parent of leaves)

If (r has 2 children) add x as a new child of r;

Else /* r has 3 children */

order x and the three children of r in the linear order;

let the first two be children of r, and the rest two be children of r’;

return;

3. If (k1(r) >= x) v = c1(r);

Else If (k2(r) >= x or c3(r)==NULL) v = c2(r);

Else v = c3(r);

4. AddLeaf(v, x, v’);

5. If (v’ == Null) return;

6. If (v’ != NULL and r has 2 children) add v’ as a new child of r;

Else /* r has 3 children and v’ is not NULL */

order v’ and the three children of r in the linear order;

let the first two be children of r; and the rest two be children of r’;

return.

Analysis: Clearly, the running time of the algorithm Insert is dominated by that of the
procedure AddLeaf, which at each level of the 2-3 tree spends constant time (see steps 1-3, 5-6
of the procedure AddLeaf). Since a 2-3 tree with n leaves has a height bounded by log n, we
conclude that the algorithm Insert runs in time O(log n).
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4 Deletion

Suppose that after deleting a leaf w from a 2-3 tree, the parent v of w is left with only one
child. If v is the root, then we delete v and let its sole child be the new root, which gives a valid
2-3 tree. If v is not the root, but the parent p of v has at least four grandchidren, then we can
rearrange these grandchidren to make either two or three children for p so that the resulting
tree again becomes a valid 2-3 tree.

The worst case is that the parent p of v has only three grandchildren, i.e., the node v has
only one sibling v′ and v′ has only two children. In this case, we transfer the sole child of v to
the sibling v′, and delete v. This resolves the problem for the nodes at the level of v (v′ has
three children while v is deleted), but may leave the parent node p with only one child. Should
this be the case, we repeat the above process, recursively, with p in place of v.

Summarizing these discussions, we get the algorithm Delete, as shown below, where proce-
dure Delete() is merely a driver for sub-procedure Del() in which the actual work is done.

The variables done and 1son in Del() are boolean flags used to indicate successful deletion
and to detect the case when a node in the tree has only one child, respectively.

In the worst case we need to traverse a path in the tree from root to a leaf to locate the leaf
to be deleted, then from that leaf node to the root (the worst case happens when every non-leaf
node on the path has only two children and has only one sibling that has only two children in
the original 2-3 tree T ). Thus the time complexity of Delete algorithm for a 2-3 tree with n
leaves is O(log n).

Algorithm Delete(r, x)

1. If (r == Null) return "x not found";

2. If (r is a leaf)

If (x == k1(r)) r = Null; return "x deleted";

Else return "x not found";

3. Del(r, x, done, 1son);

4. If (done == false) return "x not found";

5. If (1son == true) r = c1(r); return "x deleted".

Algorithm Del(r, x, done, 1son)

1. done = true; 1son = false;

2. If (r is a parent of leaves) process properly and return;

/* i.e., delete x if it is in the tree; update done and 1son */

3. If (x <= k1(r)) r’ = c1(r);

Else if (x <= k2(r)) or (c3(r) == Null) r’ = c2(r);

Else r’ = c3(r);

4. Del(r’, x, done’, 1son’);

5. If (done’ == false) done = false; return;

6. If (1son’ == true)

If (r has at least 4 grandchildren)

reorganize the grandchildren of r so that each of r and its

children has either 2 or 3 children; return;

Else

make r a 1-child node (with 3 grandchildren);

1son = true; return.

5 Splice

Splicing two trees into one big tree is a special case of the more general operation of merging
two trees. Splice assumes that all the elements in one of the trees are larger than all those in the
other tree. This assumption effectively reduces the problem of merging the trees into “pasting”
the shorter tree into a proper position in the taller tree. “Pasting” the shorter tree is actually
no more than performing an ”adding a child” operation to a proper node in the taller tree.
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To be more specific, let T1 and T2 be two 2-3 trees which we wish to splice into a single
2-3 tree T , where all elements in T1 are smaller than that in T2. Furthermore, assume that the
height of T1 is less than or equal to that of T2 so that T1 is “pasted” to T2 as a left child of a
leftmost node at a proper level in T2. In the case where the heights are equal, the new tree T
can be easily constructed by letting T1 and T2 be the two children of the root of T . Otherwise,
a node v at a proper level in the tree T2 is found, and T1 is inserted as the left child of v. Note
that the level of the node v in the tree T2 is given by (assume the root of T2 is at level 0):

height(T2)− height(T1)− 1

A more detailed description of the algorithm Splice is given as follows.

Algorithm Splice(T, T1, T2)

/* Assume all elements in T1 are less than any elements in T2 */

1. h1 = height of T1; h2 = height of T2;

2. If h1 == h2

create a root r for T and let T1 and T2 be children of r; return;

3. If h1 < h2 find the leftmost node v in T2 at level (h2 - h1 - 1),

add T1 as a new child of v; T = T2; return;

4. If h1 > h2 find the rightmost node v in T1 at level (h1 - h2 - 1),

add T2 as a new child of v; T = T1; return.

Note that steps 3-4 in the algorithm Splice may cause other nodes in a 2-3 tree (e.g., the node v)
to have more than 3 children. Therefore, these steps should really be implemented as recursive
procedures that are similar to the algorithm AddLeaf as given in the algorithm Insert.

The heights h1 and h2 of the trees T1 and T2, respectively, in step 1 can be computed by
tracing a path in the trees from the root to (any) leaf. Thus, step 1 takes time O(log n). So the
algorithm Splice runs in time O(log n). If we already know the values of h1 and h2 so step 1 of
the algorithm can be omitted, then the algorithm follows a path in the taller tree from the root
to a node a level h, where h is the difference of the heights of the two trees T1 and T2 minus 1.
Thus, under this assumption, the running time of the algorithm Splice will be O(h). This is
summarized in the following theorem.

Theorem 2 The algorithm Splice takes time O(log n). If the heights of the two trees are
known, then the two trees can be spliced in time O(h), where h is the difference of the heights
of the two trees.

The second part of Theorem 2 will be useful in developing an algorithm for the more com-
plicated operation Split on 2-3 trees, which is given in the next section.

6 Split

By splitting a given 2-3 tree T into two 2-3 trees, T1 and T2, at a given element x, we mean to
split the tree T in such a way that all elements in T that are less than or equal to x go to T1
while the remaining elements in T go to T2.

The idea is as follows: based on the way we search the element x in the tree T , we in addition
use two stacks to store, respectively, the subtrees to the left and the subtrees to the right of the
traversed path (splitting path). Finally, the subtrees in each stack are spliced together to form
the desired trees T1 and T2. The algorithm is given as follows.
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Algorithm Split(T, x, T1, T2)

/* Split T into T1 and T2 such that all elements in T1 are <= x, and all

elements in T2 are > x, where SL and SR are stacks.*/

1. r = the root of T;

2. While r is not a leaf Do

If (x <= k1(r))

If (c3(r) != Null) SR <-- c3(r);

SR <-- c2(r);

r = c1(r);

Else If (k1(r) < x <= k2(r))

SL <-- c1(r);

If (c3(r) != Null) SR <-- c3(r);

r = c2(r);

Else /* x is in the third child of r */

SL <-- c1(r); SL <-- c2(r);

r = c3(r);

3. /* r is a leaf */

If (x <= k1(r)) SL <-- r; Else RL <-- r;

/* construct T1 and T2 */

4. T1 <-- SL;

5. While SL is not empty Do

t <-- SL;

Splice(T1, t, T1);

6. T2 <-- SR;

7. While SR is not empty Do

t <-- SR;

Splice(T2, T2, t);

Note that we have omitted certain special cases in the above algorithm. For example, if x is
smaller than all elements in T, then we would have T1 = ∅ and T2 = T. Similarly we can handle
the case where x is larger than all elements in T. These cases can be tested and processed in
time O(log n). We leave the details to the reader.

Suppose that the subtrees in the stack SL are τ1, τ2, . . ., τh, and that the subtrees were
pushed into the stack SL in the order τh, τh−1, . . ., τ1. By the properties of a 2-3 tree, we know
that for all i, all elements in the subtree τi are smaller than any element in the subtree τi−1.
Since the subtrees in SL are popped out from SL in the order of τ1, τ2, . . ., τh and are spliced in
the tree T1 (steps 4-5), we know that the splice operation Splice(T1, t, T1) is always valid.
Similarly, steps 6-7 are valid.

It is easy to see that the While loop in step 2 takes time O(log n). The analysis for the rest
of the algorithm is a bit more complicated. In each of steps 4-5 and steps 6-7, we may need to
splice more than a constant number of subtrees. Thus, if we count the complexity of each splice
as O(log n), we would not be able to bound the running time of these steps by O(log n).

Note that the heights of the subtrees in the stacks SL and SR can be easily computed while
we traverse the splitting path in T from its root in step 2 of the algorithm Split. By taking
advantage of this fact and Theorem 2, we can have more precise analysis for the complexity of
the algorithm Split.

The use of the stacks SL and SR to store the subtrees guarantees that the height of a subtree
closer to stack top is not larger than that of the subtree immediately deeper in the stack. A
crucial observation is that since we splice shorter trees first (which are on the top part of the
stacks), the difference between the heights of two trees to be spliced is always small. In fact, the
total time spent on splicing all these subtrees is bounded by O(log n). We give a formal proof
for this as follows.

Assume before we start step 4, the subtrees stored in the stack SL are

τ1, τ2, · · · , τh, (1)
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in the order from top to bottom in the stack SL. For a 2-3 tree τ , denote by ht(τ) the height of
τ . According to the algorithm Split, we have

ht(τ1) ≤ ht(τ2) ≤ · · · ≤ ht(τh)

and no three consecutive subtrees in the stack have the same height. Thus, we can partition the
sequence (1) into non-empty “segments” such that each segment contains subtrees of the same
height in the sequence:

s1, s2, · · · , sq
Each si either is a single subtree or consists of two consecutive subtrees of the same height in
sequence (1). Moreover, q ≤ log n. Let ht(si) be the height of the subtrees contained in the
segment si. We have

ht(s1) < ht(s2) < · · · < ht(sq) (2)

The While loop in Step 5 first splices the subtrees in the segment s1 into a single 2-3 tree

T
(1)
1 , then recursively splices the subtrees in the segment si and the 2-3 tree T

(i−1)
1 into a 2-3

tree T
(i)
1 , for i = 2, 3, . . . , q. We have the following lemma.

Lemma 3 For all 2 ≤ i ≤ q, ht(si−1) ≤ ht(T (i−1)
1 ) ≤ ht(si).

Proof. The inequality ht(s1) ≤ ht(T (1)
1 ) is obvious since T

(1)
1 is obtained by splicing subtrees

in the segment s1. For i > 2, since T
(i−1)
1 is obtained by splicing the subtrees in si−1 and the

tree T
(i−2)
1 , and the subtrees in si−1 have height ht(si−1), we must have ht(si−1) ≤ ht(T (i−1)

1 ).

Now consider the second inequality. The 2-3 tree T
(1)
1 is obtained by splicing the subtrees

in the segment s1, which contains at most two subtrees, both of height ht(s1). Thus, the height

of the 2-3 tree T
(1)
1 is at most ht(s1) + 1, which, by (2), is not larger than ht(s2). Thus,

ht(T
(1)
1 ) ≤ ht(s2), and the second inequality in the lemma holds true for the case i = 2.

For the case i > 2, the tree T
(i−1)
1 is obtained by splicing the subtrees in the segment si−1

and the tree T
(i−2)
1 (note i > 2). By the inductive hypothesis, ht(T

(i−2)
1 ) ≤ ht(si−1). If the

segment si−1 consists of a single subtree τ of height ht(si−1), then splicing the tree τ of height

ht(si−1) and the tree T
(i−2)
1 of height at most ht(si−1) results in a 2-3 tree T

(i−1)
1 of height at

most ht(si−1) + 1, which, by (2), is not larger than ht(si).
Now suppose that the segment si−1 consists of two subtrees τ ′ and τ ′′ of height ht(si−1),

and that T
(i−2)
1 is first spliced with τ ′ to result in a tree τ+, then τ+ is spliced with τ ′′ to

result in the tree T
(i−1)
1 . The tree τ+ can have a height either ht(si−1) or ht(si−1) + 1 (note

ht(T
(i−2)
1 ) ≤ ht(si−1)). If the height of τ+ is ht(si−1), then splicing τ+ of height ht(si−1) and the

tree τ ′′ (also of height ht(si−1)) results in the tree T
(i−1)
1 of height at most ht(si−1) + 1 ≤ ht(si).

If the height of the tree τ+ is ht(si−1)+1, then the root of the tree τ+ must have only two children
(see algorithm Insert, step 3). Thus, splicing τ+ and τ ′′ will not increase the tree height (see

algorithm AddLeaf, step 6), so the tree T
(i−1)
1 resulted from the splicing has height ht(si−1) + 1,

again not larger than ht(si). This concludes that we will always have ht(T
(i−1)
1 ) ≤ ht(si). The

lemma is proved.

Now we are ready for the following theorem
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Theorem 4 The algorithm Split runs in time O(log n).

Proof. It is obvious that steps 1, 2, 3, 4, and 6 of the algorithm Split take time O(log n).
Thus, to prove the theorem, we only need to prove that the While loops in steps 5 and 7 of the
algorithm take time O(log n).

We first consider, for each i, the amount of time spent on splicing the 2-3 tree T
(i−1)
1 and

the subtrees in the segment si to get the 2-3 tree T
(i)
1 . By Lemma 3, ht(T

(i−1)
1 ) ≤ ht(si). If si is

a single subtree τi, then by Theorem 2, the time for splicing T
(i−1)
1 and τi to get T

(i)
1 is bounded

by a constant times ht(si)− ht(T (i−1)
1 ).

Now suppose that si consists of two subtrees τ ′i and τ ′′i , and that the tree T
(i−1)
1 is first

spliced with τ ′i that gives a tree τ+i , then the tree τ+i is spliced with τ ′′i to get T
(i)
1 . The time

for splicing T
(i−1)
1 and τ ′i to get τ+i is again bounded by a constant times ht(si) − ht(T (i−1)

1 ).
Moreover, the height of the resulting tree τ+i is either h(si) or h(si) + 1. So splicing τ+i with
τ ′′i of height ht(si) takes only constant time. Therefore, in this case, the total time to construct

T
(i)
1 from T

(i−1)
1 and si is bounded by a constant times ht(si)− ht(T (i−1)

1 ) + 1.

In summary, to construct the 2-3 tree T1 = T
(q)
1 , the time of the While loop in step 5 of

the algorithm Split (noticing that the tree T
(1)
1 can always be constructed from s1 in constant

time) is bounded by a constant times

q∑
i=2

(ht(si)− ht(T (i−1)
1 ) + 1)

By Lemma 3, ht(si−1) ≤ ht(T
(i−1)
1 ) for all i. Thus, the time complexity of the While loop in

step 5 is bounded by a constant times

q∑
i=2

(ht(si)− ht(si−1) + 1) = ht(sq)− ht(s1) + (q − 1)

Since the quantities h(sq), h(s1), and q are all bounded by log n, we conclude that the While

loop in step 5 takes time O(log n). The same conclusion applies to step 7 of the algorithm, thus
completing the proof of the theorem.
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