CSCE-433 Formal Languages \& Automata CSCE-627 Theory of Computability

Spring 2022
Instructor: Dr. Jianer Chen
Office: PETR 428
Phone: 845-4259
Email: chen@cse.tamu.edu
Office Hours: MWF 10:30-11:30am
Senior Grader: Avdhi Shah
Office: N/A
Phone: tba
Email: avdhi.shah@tamu.edu
Office Hours: MW 3:00-4:00pm
\section*{Assignment \# 5}
(Due April 8, 2022)

Instructions.

- Your assignment must be typed using your favorite word processor. You may draw diagrams by hand, but only if you are very neat and the diagram is legible.
- Turn in a PDF file of your homework on Canvas.
- Homework is always due at the beginning of the class on the due day.

Questions.

1. (20 points) Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet $\{0,1\}$.
(a) (CSCE 433 students only) $L_{433}=\{w \mid w$ contains twice as many 0 's as 1 's $\}$.
(b) (CSCE 627 students only) $L_{627}=\{w \mid w$ does not contains twice as many 0 's as 1 's $\}$.
2. (20 points) Show that the collection of (Turing-)decidable languages is closed under the operations of (a) complementation, and (b) intersection. Use the solution for Problem 3.15(a) in the textbook (page 191) as a guide for the level of details needed in your solutions.
3. (20 points) Show that the collection of Turing-recognizable languages is closed under the operation of intersection. Use the solution for Problem 3.16(a) in the textbook (page 191) as a guide for the level of details needed in your solutions.
4. (20 points) Prove that the following languages are decidable.
(a) (CSCE 433 students only) $L_{433}=\left\{\langle A\rangle \mid A\right.$ is a DFA and $\left.L(A)=\Sigma^{*}\right\}$.
(b) (CSCE 627 students only) $L_{627}=\{\langle G\rangle \mid G$ is a CFG that generates $\epsilon\}$.
5. (20 points) Prove: let L be a language such that both L and the complement \bar{L} of L are Turing-regconizable, then L is decidable. The level of details of your proof should be similar to that for Questions 2-3 above.
