CSCE-433 Formal Languages \& Automata CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen
Office: PETR 428
Phone: 845-4259
Email: chen@cse.tamu.edu
Office Hours: MWF 10:30-11:30am

Senior Grader: Avdhi Shah
Office: N/A
Phone: tba
Email: avdhi.shah@tamu.edu
Office Hours: tba

Assignment \# 1

(Due February 2, 2022)

Instructions.

- Your assignment must be typed using your favorite word processor. You may draw diagrams by hand, but only if you are very neat and the diagram is legible.
- Turn in a PDF file of your homework on Canvas.
- Homework is always due at the beginning of the class on the due day.

Questions.

1. Prove by induction: $1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\left(4 n^{3}-n\right) / 3$
2. Prove by induction: For every integer $n \geq 0,5^{2 n+1}+2^{2 n+1}$ is divisible by 7 .
3. Prove by contradiction: For any integers a, b, c, if $a^{2}+b^{2}=c^{2}$, then at least one of a and b is an even number;
4. Prove by contradiction: (a) For any integer n, if n^{2} is divisible by 6 , then n is also divisible by 6 ; (b) $\sqrt{6}$ is an irrational number. Both (a) and (b) should be proved by contradiction.
5. [CSCE-433 Students only] Suppose that n straight lines are drawn in the plane such that no two lines are parallel and no three lines go through the same point. These lines divide the plane into r_{n} regions. Prove: $r_{n}=1+n(n+1) / 2$.
6. [CSCE-627 Students only] Prove that every simple graph (i.e., a graph with no self-loop and multiple edges) with two or more vertices contains two vertices that have equal degrees.

Further suggested practice. Textbook: Problems 0.10 and 0.12 (page 27).

