CSCE-433 Formal Languages \& Automata CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen
Office: PETR 428
Phone: 845-4259
Email: chen@cse.tamu.edu
Office Hours: MWF 10:30-11:30am

Senior Grader: Avdhi Shah
Office: N/A
Phone: tba
Email: avdhi.shah@tamu.edu
Office Hours: tba

Solutions to Assignment \#6

1. Let A and B be languages and $A \leq_{m} B$.
(a) If B is context-free, does that imply that A is also context-free? Why or why not?
(b) If A is context-free, does that imply that B is also context-free? Why or why not?

Solutions.

(a) Not necessary. For example, let $A=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ and $B=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. As we studied in class, A is not context-free but B is context-free. Consider the following function:

$$
R_{a}(x)= \begin{cases}a b & \text { if } x=a^{n} b^{n} c^{n} \text { for some } n \geq 0 \\ a a b & \text { otherwise }\end{cases}
$$

Obviously, we can construct a Turing machine M_{a} that computes the function $R_{a}(x)$ such that the Turing machine M_{a} halts on all inputs. Moreover, note $a b \in B$ and $a a b \notin B$. Thus, $R_{a}(x)$ is a yes-instance of B if and only if x is a yes-instance of A. Therefore, the function $R_{a}(x)$ is a mapping reduction from A to B, i.e., $A \leq_{m} B$. However, B is context-free but A is not context-free.
(b) Not necessary. For example, let $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$. Now A is context-free but B is not context-free. Consider the following function:

$$
R_{b}(x)= \begin{cases}a b c & \text { if } x=a^{n} b^{n} \text { for some } n \geq 0 \\ a b c c & \text { otherwise }\end{cases}
$$

Again $R_{b}(x)$ can be computed by a Turing machine M_{b} that halts on all inputs. Moreover, note $a b c \in B$ and $a b c c \notin B$. Thus, $R_{b}(x)$ is a yes-instance of B if and only if x is a yes-instance of A. Therefore, the function $R_{b}(x)$ is a mapping reduction from A to B, i.e., $A \leq_{m} B$. However, A is context-free but B is not context-free.
2. Let $L=\left\{\langle M\rangle \mid M\right.$ is a Turing machine that accepts w^{R} whenever it accepts $\left.w\right\}$. Show that L is undecidable.

Proof. We show a mapping reduction (i.e., an algorithm) R that reduces the halting problem Halt to the language L given in the question, i.e., HALT $\leq_{m} L$. Since HALT is undecidable, this mapping reduction
R will show the undecidability of the language L. The algorithm R on an instance (M, w) of Halt will produce the encoding of a Turing machine M^{\prime} such that if (M, w) is a yes-instance of HALT, then the language accepted by M^{\prime} is $\{001,100\}$ (thus $\left\langle M^{\prime}\right\rangle$ is a yes-instance of L), while if (M, w) is a no-instance of Halt, then the language accepted by M^{\prime} is $\{001\}$ (thus $\left\langle M^{\prime}\right\rangle$ is a no-instance of L).

Here is a detailed description of the algorithm R : on an input (M, w) that is an instance of Halt, the algorithm R outputs the encoding $\left\langle M^{\prime}\right\rangle$ of a Turing machine M^{\prime}, which is given as follows:

```
Turing Machine M'(x)
1. if x=011 then accept x;
2. if }x\not=110\mathrm{ then reject }x\mathrm{ ;
3. run }M\mathrm{ on }w\mathrm{ (i.e., call the subroutine }M\mathrm{ on input w);
4. accept }
```

Note that on the input (M, w), the algorithm R produces the above code and makes it its output. In particular, R does not run the Turing machine M^{\prime} (especially R does not run step 3 of the Turing machine M^{\prime}). Therefore, the algorithm R always halts.

First note that the Turing machine M^{\prime} rejects all strings x if x is not 011 and 110 . Moreover, M^{\prime} always accepts 011 . Finally, on input 110, which is the reverse of $011: 110=011^{R}$, the Turing machine M^{\prime} will reach step 3 and run the Turing machine M on input w, where (M, w) is the input to the algorithm R and is an instance of Halt, and accept 110 if and only if the Turing machine M halts on w. In summary, if M halts on w, i.e., if (M, w) is a yes-instance of HALT, then the language accepted by M^{\prime} is $\{011,110\}$, so $\left\langle M^{\prime}\right\rangle$ is a yes-instance of L, while if M does not halt on w, i.e., if (M, w) is a no-instance of Halt, then on input 110, the Turing machine M^{\prime} will be trapped in step 3 so will not accept 110 , so the language accepted by M^{\prime} in this case is $\{011\}$ and $\left\langle M^{\prime}\right\rangle$ is a no-instance of L.

Therefore, the algorithm R on an instance (M, w) of Halt produces an instance $\left\langle M^{\prime}\right\rangle$ of the language L such that (M, w) is a yes-instance of Halt if and only if $\left\langle M^{\prime}\right\rangle$ is a yes-instance of L. Moreover, R halts on all inputs. In conclusion, R is a mapping reduction from the undecidable problem Halt to the language L. As a consequence, this proves that the language L is undecidable.
3. A useless state in a Turing machine is one that is never entered on any input string. Consider the problem of determining whether a Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.

Proof. We formulate the problem as the following language:
Useless $=\{\langle M, q\rangle \mid q$ is a useless state of the Turing machine $M\}$
Recall that the complement of the halting problem Halt:

$$
\text { Not-Halt }=\{\langle M, w\rangle \mid \text { The Turing machine } M \text { does not halt on input } w\}
$$

is undecidable (in fact, as we showed in class, Not-Halt is not even Turing-recognizable). To prove the undecidability of the language Useless, we construct a mapping reduction R from the undecidable problem Not-Halt to the problem Useless, as follows: on an instance (M, w) of Not-Halt, the mapping reduction R constructs and outputs an instance ($M^{\prime}, q_{a c c}$) of USELESS, where $q_{a c c}$ is the unique accepting state of the Turing machine M^{\prime}. The Turing machine M^{\prime} works as follows: on any input x, M^{\prime} first runs the Turing machine M on input w, then enters the accepting state $q_{a c c}$ of M^{\prime} to accept its own input x. Again, we emphasize that the mapping reduction R only produces the pair $\left(M^{\prime}, q_{a c c}\right)$, i.e., the encoding of the Turing machine M^{\prime} and its accepting state $q_{a c c}$, not running M^{\prime} on its input x. Thus, the mapping reduction R can be computed by a Turing machine that halts on all inputs. It is easy to see that
the Turing machine M^{\prime} cannot reach its accepting state $q_{a c c}$ on any input x (i.e., $q_{\text {acc }}$ is a useless state of M^{\prime} so ($M^{\prime}, q_{a c c}$) is a yes-instance of Useless) if and only if the Turing machine M does not halt on w (i.e., (M, w) is a yes-instance of Not-Halt). This verifies that R is indeed a mapping reduction from Not-Halt to Useless. Since Not-Halt is undecidable, we conclude that the language Useless is also undecidable.
4. (a) (CSCE 433 students only) Show that P is closed under union, concatenation, and complement.
(b) (CSCE 627 students only) Show that NP is closed under union and concatenation.

Proof.

(a) We first prove that the class P is closed under union and concatenation. Let L_{1} and L_{2} be two languages in P . Thus, there are (deterministic) algorithms (i.e., Turing machines) M_{1} and M_{2} that accept L_{1} in time $O\left(n^{c}\right)$ and L_{2} in time $O\left(n^{d}\right)$, respectively, where c and d are fixed constants. Now consider the following algorithm M_{\cup} :

```
Turing Machine }\mp@subsup{M}{\cup}{}(x
1. run }\mp@subsup{M}{1}{}\mathrm{ on }x\mathrm{ ;
2. if }\mp@subsup{M}{1}{}\mathrm{ accepts }x\mathrm{ then accept }x\mathrm{ ;
3. run }\mp@subsup{M}{2}{}\mathrm{ on }x\mathrm{ ;
4. if }\mp@subsup{M}{2}{}\mathrm{ accepts }x\mathrm{ then accept }x\mathrm{ ;
5. reject }
```

It is easy to see that M_{\cup} accepts x if and only if either M_{1} accepts x (i.e., $x \in L_{1}$) or M_{2} accepts x (i.e., $x \in L_{2}$), that is, if and only if $x \in L_{1} \cup L_{2}$. Thus, the algorithm M_{\cup} accepts the language $L_{1} \cup L_{2}$. Moreover, let $a=\max \{c, d\}$, then a is also a fixed constant and the algorithm M_{\cup} runs in time $O\left(n^{c}+n^{d}\right)+O(1)=O\left(n^{a}\right)$ (where the time $O(1)$ is for the execution of steps 2, 4, and 5), i.e., M_{\cup} runs in polynomial time. Finally, since both algorithms M_{1} and M_{2} are deterministic, the algorithm M_{\cup} is also deterministic. Therefore, the language $L_{1} \cup L_{2}$ is accepted by the deterministic polynomial-time algorithm M_{\cup}, i.e., $L_{1} \cup L_{2}$ is in the class P . This proves that the class P is closed under union.

Now consider the concatenation $L_{c a t}=\left\{x \mid x=x_{1} x_{2}, x_{1} \in L_{1}, x_{2} \in L_{2}\right\}$ of L_{1} and L_{2}. The difficulty here is that we do not know where to break the input x into x_{1} and x_{2} so that we can get $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$. To resolve this, we simply try all possible ways of breaking. The algorithm is given as follows (note that if $i=0$ then $a_{1} a_{2} \cdots a_{i}=\varepsilon$ and if $i=n$ then $a_{i+1} a_{i+2} \cdots a_{n}=\varepsilon$):

```
Turing Machine \(M_{c a t}(x)\)
\(\backslash \backslash\) assume \(|x|=n\) and \(x=a_{1} a_{2} \cdots a_{n}\)
1. for \((i=0 ; i \leq n ; i++)\)
1.1. run \(M_{1}\) on \(a_{1} a_{2} \cdots a_{i}\);
1.2. if \(M_{1}\) accepts \(a_{1} a_{2} \cdots a_{i}\)
1.3. then run \(M_{2}\) on \(a_{i+1} a_{i+2} \cdots a_{n}\);
1.4. if \(M_{2}\) accepts \(a_{i+1} a_{i+2} \cdots a_{n}\)
1.5. then accept \(x\);
2. reject \(x\)
```

If $x=a_{1} a_{2} \cdots a_{n}$ is in $L_{\text {cat }}$, then there must be an index i_{0} such that $a_{1} a_{2} \cdots a_{i_{0}} \in L_{1}$ and $a_{i_{0}+1} a_{i_{0}+2} \cdots a_{n} \in L_{2}$. Thus, when the for-loop of the algorithm $M_{\text {cat }}$ reaches $i=i_{0}$, step 1.5 of the algorithm will accept x. On the other hand, if $x=a_{1} a_{2} \cdots a_{n}$ is not in $L_{\text {cat }}$, then for any index i, at least one of the conditions $a_{1} a_{2} \cdots a_{i} \in L_{1}$ and $a_{i+1} a_{i+2} \cdots a_{n} \in L_{2}$ will fail, so the algorithm must reach step 2 and reject x. In conclusion, the algorithm $M_{\text {cat }}$ accepts the language $L_{\text {cat }}$. The algorithm $M_{c a t}$ is deterministic because both the algorithms M_{1} and M_{2} are deterministic. Finally, the for-loop in the algorithm $M_{c a t}$ runs for n times, in each time it runs the algorithms M_{1} and M_{2} on inputs of length bounded by n, thus taking $O\left(n^{a}\right)$ time, where $a=\max \{c, d\}$. As a result, the algorithm $M_{\text {cat }}$ runs in
time $O\left(n \cdot n^{a}\right)=O\left(n^{a+1}\right)$, which is a polynomial of n. Summarizing the above discussion, we conclude that the language $L_{\text {cat }}$ is accepted by the deterministic polynomial-time algorithm $M_{c a t}$, so $L_{c a t}$ is in the class P. This proves that the class P is closed under concatenation.

The case for complement is simple. Let \bar{L}_{1} be the complement of the language L_{1}, where L_{1} is in the class P and accepted by a deterministic polynomial-time Turing machine M_{1}. We simply swap the accepting states and the rejecting states of the Turing machine M_{1} to get a new Turing machine \bar{M}_{1}. Thus, the new Turing machine \bar{M}_{1} accepts an input x if and only if the Turing machine M_{1} rejects x, i.e., \bar{M}_{1} accepts exactly the complement \bar{L}_{1} of L_{1}. Because M_{1} is a deterministic polynomial-time algorithm, \bar{M}_{1} is also a deterministic polynomial-time algorithm that accepts \bar{L}_{1}. This proves that the complement \bar{L}_{1} of the language L_{1} is also in the class P , thus, completing the proof that the class P is closed under complement.
(b) Let L_{1} and L_{2} be two languages in the class NP. Thus, there are nondeterministic Turing machines M_{1} and M_{2} that accept L_{1} in time $O\left(n^{c}\right)$ and L_{2} in time $O\left(n^{d}\right)$, respectively, where c and d are fixed constants.

To show that the class NP is closed under union, consider the following Turing machine M_{\cup} :

```
Turing Machine M}M\cup(x
1. nondeterministically pick one of steps (a) and (b):
(a) run }\mp@subsup{M}{1}{}\mathrm{ on }x\mathrm{ ;
(b) run }\mp@subsup{M}{2}{}\mathrm{ on }x\mathrm{ .
```

The Turing machine M_{\cup} is nondeterministic because of step 1 and because the Turing machines M_{1} and M_{2} are nondeterministic. Moreover, the running time of the Turing machine M_{\cup} is bounded by the sum of that of M_{1} and M_{2}, i.e., by $O\left(n^{c}+n^{d}\right)=O\left(n^{a}\right)$, where $a=\max \{c, d\}$ is a fixed constant. Thus, M_{\cup} is a nondeterministic polynomial-time Turing machine.

We must carefully verify that the Turing machine M_{\cup} accepts the union $L_{1} \cup L_{2}$ of L_{1} and L_{2}. For this, we must verify that for any $x \in L_{1} \cup L_{2}$, there is a computational path of M_{\cup} that accepts x, while for $x \notin L_{1} \cup L_{2}$, all computational paths of M_{\cup} reject x.

Let $x \in L_{1} \cup L_{2}$. Then either $x \in L_{1}$ or $x \in L_{2}$. Without loss of generality, suppose $x \in L_{1}$. Since M_{1} accepts L_{1}, on the input x, there must be a computational path P_{1} of M_{1} that accepts x. Now the computational path P_{\cup} of M_{\cup} on input x that in step 1 (nondeterministically) takes step (a) to run M_{1} on x then follows the computational path P_{1} of M_{1} will accept x. Therefore, for any $x \in L_{1} \cup L_{2}$, there is a computational path of M_{\cup} that accepts x.

On the other hand, suppose $x \notin L_{1} \cup L_{2}$, i.e., $x \notin L_{1}$ and $x \notin L_{2}$. Then no computational path of M_{1} and M_{2} on input x would accept x. Thus, for the Turing machine M_{\cup} on input x, no matter which of step (a) or step (b) is taken, and no matter which computational path of M_{1} or M_{2} is followed, the corresponding computational path of M_{\cup} will reject x. Thus, all computational paths of the Turing machine M_{\cup} will reject x.

This verifies that the nondeterministic polynomial-time Turing machine M_{\cup} accepts the language L_{\cup}, i.e., the language L_{\cup} is in the class NP. In conclusion, the class NP is closed under union.

To show that NP is closed under concatenation, consider the following Turing machine $M_{\text {cat }}$:

```
Turing Machine \(M_{c a t}(x)\)
\(\backslash \backslash\) assume \(|x|=n\) and \(x=a_{1} a_{2} \cdots a_{n}\)
1. nondeterministically pick an integer \(i, 0 \leq i \leq n\);
run \(M_{1}\) on \(a_{1} a_{2} \cdots a_{i}\);
        if the computational path of \(M_{1}\) rejects \(a_{1} a_{2} \cdots a_{i}\) then reject \(x\);
        run \(M_{2}\) on \(a_{i+1} a_{i+2} \cdots a_{n}\);
        if the computational path of \(M_{2}\) rejects \(a_{i+1} a_{i+2} \cdots a_{n}\) then reject \(x\);
        accept \(x\)
```

The Turing machine M_{\cup} is nondeterministic because of step 1 and because the Turing machines M_{1} and M_{2} are nondeterministic. Moreover, the running time of the Turing machine M_{\cup} is bounded by the sum of that of M_{1} and M_{2} (note that $M_{c a t}$ runs each of M_{1} and M_{2} only once), i.e., by $O\left(n^{c}+n^{d}\right)=$ $O\left(n^{a}\right)$, where $a=\max \{c, d\}$ is a fixed constant. Thus, M_{\cup} is a nondeterministic polynomial-time Turing machine.

To verify that Turing machine $M_{c a t}$ accepts the language $L_{c a t}=\left\{x \mid x=x_{1} x_{2}, x_{1} \in L_{1}, x_{2} \in L_{2}\right\}$, which is the concatenation of L_{1} and L_{2}, let $x=a_{1} a_{2} \cdots a_{n}$ be in $L_{\text {cat }}$. Then there must be an index i_{0} such that $a_{1} a_{2} \cdots a_{i_{0}} \in L_{1}$ and $a_{i_{0}+1} a_{i_{0}+2} \cdots a_{n} \in L_{2}$. Now for the computational path of $M_{\text {cat }}$ that takes the index $i=i_{0}$ in step 1 , the Turing machine M_{1} in step 2 will accept $a_{1} a_{2} \cdots a_{i_{0}}$ so it will reach step 4 to run M_{2} that will accept $a_{i_{0}+1} a_{i_{0}+2} \cdots a_{n} \in L_{2}$. Thus, this computational path of $M_{\text {cat }}$ will eventually reach step 6 and accept x. On the other hand, if $x=a_{1} a_{2} \cdots a_{n}$ is not in $L_{\text {cat }}$, then for any index i (nondeterministically picked at step 1 of the Turing machine $M_{\text {cat }}$), at least one of the conditions $a_{1} a_{2} \cdots a_{i} \in L_{1}$ and $a_{i+1} a_{i+2} \cdots a_{n} \in L_{2}$ will fail, so the algorithm $M_{\text {cat }}$ will either reject at step 3 or reject at step 5 , no matter which computational path of M_{1} and M_{2} is followed. That is, all computational paths of the Turing machine $M_{c a t}$ will reject x. This proves that the nondeterministic polynomial-time Turing machine $M_{c a t}$ accepts the concatenation $L_{c a t}$ of L_{1} and L_{2}, thus, $L_{c a t}$ is in the class NP. This completes the proof that the class NP is closed under concatenation.
5. (a) (CSCE 433 students only) Let Composite $=\{N \mid N>0$ is an integer but not a prime $\}$. Prove that the language Composite is in NP.
(b) (CSCE 627 students only) Two graphs G and H are isomorphic if the vertices of G may be renamed so that G becomes identical to H. Prove that the following language is in NP:

$$
\text { ISOMORPHISM }=\{\langle G, H\rangle \mid G \text { and } H \text { are isomorphic }\} .
$$

Proof.

(a) For this question, we need some more detailed and careful understanding of the representation of instances of the problem Composite. If an integer $N>0$ is given as a binary number, then it has $\left\lfloor\log _{2} N\right\rfloor+1$ bits. If N is given as an instance of Composite, then its length is $n=\left\lfloor\log _{2} N\right\rfloor+$ $1 \approx \log _{2} N$. Therefore, when we say that an algorithm solves the problem Composite in polynomial time, we really mean that the algorithm runs in time that is bounded by a polynomial of the length $n=|N| \approx \log _{2} N$ of the input integer N. Thus, to prove that the problem Composite is in NP, we need to present a nondeterministic algorithm that solves the problem COMPOSITE in time polynomial of $\log _{2} N$ on an input integer N.

The idea of the algorithm is simple: to prove that N is not a prime, we need to find an integer N^{\prime} such that $1<N^{\prime}<N$ and that N^{\prime} divides N. Because our algorithm is nondeterministic, we can simply "guess" the integer N^{\prime}. The algorithm is given as follows:

```
NotPrime ( \(N\) )
\(\backslash \backslash N\) is an integer, and \(n=|N|\)
1. nondeterministically guess an integer \(N^{\prime}\) of at most \(n\) bits;
2. if \(\left(N^{\prime} \leq 1\right)\) or \(\left(N^{\prime} \geq N\right)\) then reject \(N\);
3. If ( \(N^{\prime}\) does not divide \(N\) ) then reject \(N\);
4. accept \(N\).
```

We give explanations for the above algorithm, prove its correctness, and analyze its complexity. If N is not a prime, i.e., if N is a yes-instance of Composite, then there must be an integer N_{0} such that $1<N_{0}<N$ and that N_{0} divides N. In this case, the computational path of the algorithm NoPrime that correctly guessed this N_{0} in step 1 will not reject N in steps 2-3 so will reach step 4 and accept N. Thus,
for a yes-instance of Composite, there is at least one computational path of NotPrime (N) that accepts N. On the other hand, if N is a no-instance of Composite, i.e., if N is a prime, then each computational path of NotPrime that picks an integer N^{\prime} in step 1, will either find out that N^{\prime} is not a proper integer (i.e., N^{\prime} does not satisfy $1<N^{\prime}<N$) then reject N in step 2, or get a proper N^{\prime} (i.e., $1<N^{\prime}<N$) but find out that N^{\prime} does not divide N (because N is a prime) so reject N in step 3. In conclusion, if N is a no-instance of Composite, then all computational paths of NotPrime (N) will reject N. This verifies that the nondeterministic algorithm NotPrime accepts the language Composite.

What that still remains is to show that the algorithm NotPrime runs in time polynomial of $n=$ $\log _{2} N$, where n is the number of bits of the binary representation of the integer N. Step 1 takes time $O(n)$ because we can guess a binary bit 0 or 1 in constant time. Step 2 also takes time $O(n)$ because we can compare two binary numbers of at most n bits in time $O(n)$. Step 3 can be implemented using the division algorithm we learned in elementary school, which takes time $O\left(n^{2}\right)$ (students: please verify this). Therefore, each computational path of the algorithm NotPrime runs in time $O\left(n^{2}\right)$. Thus, NotPrime is a nondeterministic polynomial-time algorithm that accepts the language Composite.

This completes the proof that the language Composite is in the class NP.
(b) Assume that the vertices of the graph G are labeled $a_{1}, a_{2}, \ldots, a_{n}$, while the vertices of the graph H are labeled $b_{1}, b_{2}, \ldots, b_{n}$ (note that if G and H have different numbers of vertices, then $\langle G, H\rangle$ is obviously a no-instance of ISOMORPHISM). What we need is a one-to-one mapping h from the vertex set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of the graph G to the vertex set $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of the graph H that relabels the vertex a_{i} of G by the vertex $f\left(a_{i}\right)$ of H so that G becomes identical to H. Again, this mapping h can be "guessed" using nondeterminism. The algorithm is given as follows:

```
ISOM(G,H)
\\ the vertex set of the graph G is {\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{}}, and
\\ the vertex set of the graph H is {\mp@subsup{b}{1}{},\mp@subsup{b}{2}{},\ldots,\mp@subsup{b}{n}{}}
1. for (i=1;i\leqn;i++)
        nondeterministically guess an integer k, 1\leqk\leqn, and let h(i)=k;
        if {h(1),h(2),\ldots,h(n)}\not={1,2,\ldots,n} then reject (G,H);
        for (i=1;i\leqn;i++)
            for ( }j=1;j\leqn;j++
                if ( }\mp@subsup{a}{i}{}\mathrm{ and }\mp@subsup{a}{j}{}\mathrm{ are adjacent in }G\mathrm{ but }\mp@subsup{b}{h(i)}{}\mathrm{ and }\mp@subsup{b}{h(j)}{}\mathrm{ are not adjacent in }H\mathrm{ ) or
                ( }\mp@subsup{a}{i}{}\mathrm{ and }\mp@subsup{a}{j}{}\mathrm{ are not adjacent in G but b}\mp@subsup{b}{h(i)}{}\mathrm{ and }\mp@subsup{b}{h(j)}{}\mathrm{ are adjacent in }H\mathrm{ )
                then reject (G,H);
4. accept (G,H).
```

We give explanations for the above algorithm, prove its correctness, and analyze its complexity. If the graphs G and H are isomorphic, i.e., if (G, H) is a yes-instance of Isomorphism, then there is a one-to-one mapping h that maps each vertex a_{i} in G to its corresponding vertex $b_{h(i)}$ in H, such that for any i and j, the vertices a_{i} and a_{j} in G are adjacent if and only if the vertex $b_{h(i)}$ and $b_{h(j)}$ in H are adjacent. Therefore, for the computational path of $\operatorname{ISOM}(G, H)$ that for every i has guessed the correct $h(i)$ in step 1, the algorithm $\operatorname{ISOm}(G, H)$ will pass all the tests in steps 2-3, and reach step 4 and accept the input (G, H). Thus, for a yes-instance of ISOMORPHISm, there is at least one computational path of $\operatorname{ISOM}(G, H)$ that accepts (G, H). On the other hand, if (G, H) is a no-instance of IsOMORPHISM, i.e., if the graphs G and H are not isomorphic, then each computational path of ISOM that picks a mapping h in step 1, will either find out that h is not a one-to-one mapping (i.e., $\{h(1), h(2), \ldots, h(n)\} \neq\{1,2, \ldots, n\})$ then reject (G, H) in step 2, or get a one-to-one mapping h in step 1 but find out that h cannot keep the adjacency relations in the graphs G and H (i.e., for some i and j, either a_{i} and a_{j} are adjacent in G but $b_{h(i)}$ and $b_{h(j)}$ are not adjacent in H, or a_{i} and a_{j} are not adjacent in G but $b_{h(i)}$ and $b_{h(j)}$ are adjacent in H) so reject (G, H) in step 3. In conclusion, if (G, H) is a no-instance of ISOMORPHISM, then all computational paths of $\operatorname{ISOM}(G, H)$ will reject (G, H). This verifies that the nondeterministic algorithm ISOM accepts the language ISOMORPHISM.

For the complexity of the algorithm ISOM, first note that guessing an integer k between 1 and n takes time $O\left(\log _{2} n\right)$ because the integer k has at most $\log _{2} n$ bits (see the discussion in the solution to (a) of this question). As a result, step 1 of the algorithm ISOM takes time $O\left(n \log _{2} n\right)$. Step 2 of the algorithm ISOM can be implemented by sorting the integers in $\{h(1), h(2), \ldots, h(n)\}$ to find out if all numbers are distinct (recall that by step 1 , we know that $1 \leq h(i) \leq n$ for all i). Thus, step 2 takes time $O\left(n \log _{2} n\right)$. The loop-body of the double loop in step 3 is executed n^{2} time, and each execution of the loop-body takes time $O(1)$ (assume that the graphs G and H are given in their adjacency matrices so that vertex adjacency can be tested in time $O(1)$). Thus, step 3 of the algorithm ISOM takes time $O\left(n^{2}\right)$. In summary, every computational path of the algorithm ISOM runs in time $O\left(n \log _{2} n+n \log _{2} n+n^{2}\right)=O\left(n^{2}\right)$, which is a polynomial of n. Thus, ISOM is a nondeterministic polynomial-time algorithm that accepts the language ISOMORPHISM.

This completes the proof that the language ISOMORPHISM is in the class NP.

