
CSCE-433 Formal Languages & Automata
CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen Senior Grader: Avdhi Shah
Office: PETR 428 Office: N/A
Phone: 845-4259 Phone: tba
Email: chen@cse.tamu.edu Email: avdhi.shah@tamu.edu
Office Hours: MWF 10:30–11:30am Office Hours: tba

Solutions to Assignment #6

1. Let A and B be languages and A ≤m B.
(a) If B is context-free, does that imply that A is also context-free? Why or why not?
(b) If A is context-free, does that imply that B is also context-free? Why or why not?

Solutions.
(a) Not necessary. For example, let A = {anbncn | n ≥ 0} and B = {anbn | n ≥ 0}. As we

studied in class, A is not context-free but B is context-free. Consider the following function:

Ra(x) =

{
ab if x = anbncn for some n ≥ 0
aab otherwise

Obviously, we can construct a Turing machine Ma that computes the function Ra(x) such that the Turing
machine Ma halts on all inputs. Moreover, note ab ∈ B and aab 6∈ B. Thus, Ra(x) is a yes-instance of
B if and only if x is a yes-instance of A. Therefore, the function Ra(x) is a mapping reduction from A
to B, i.e., A ≤m B. However, B is context-free but A is not context-free.

(b) Not necessary. For example, let A = {anbn | n ≥ 0} and B = {anbncn | n ≥ 0}. Now A is
context-free but B is not context-free. Consider the following function:

Rb(x) =

{
abc if x = anbn for some n ≥ 0
abcc otherwise

Again Rb(x) can be computed by a Turing machine Mb that halts on all inputs. Moreover, note abc ∈ B
and abcc 6∈ B. Thus, Rb(x) is a yes-instance of B if and only if x is a yes-instance of A. Therefore, the
function Rb(x) is a mapping reduction from A to B, i.e., A ≤m B. However, A is context-free but B is
not context-free.

2. Let L = {〈M〉 | M is a Turing machine that accepts wR whenever it accepts w}. Show that L is
undecidable.

Proof. We show a mapping reduction (i.e., an algorithm) R that reduces the halting problem HALT to the
language L given in the question, i.e., HALT ≤m L. Since HALT is undecidable, this mapping reduction

1

R will show the undecidability of the language L. The algorithm R on an instance (M,w) of HALT

will produce the encoding of a Turing machine M ′ such that if (M,w) is a yes-instance of HALT, then
the language accepted by M ′ is {001, 100} (thus 〈M ′〉 is a yes-instance of L), while if (M,w) is a
no-instance of HALT, then the language accepted by M ′ is {001} (thus 〈M ′〉 is a no-instance of L).

Here is a detailed description of the algorithm R: on an input (M,w) that is an instance of HALT,
the algorithm R outputs the encoding 〈M ′〉 of a Turing machine M ′, which is given as follows:

Turing Machine M ′(x)
1. if x = 011 then accept x;
2. if x 6= 110 then reject x;
3. run M on w (i.e., call the subroutine M on input w);
4. accept x

Note that on the input (M,w), the algorithm R produces the above code and makes it its output.
In particular, R does not run the Turing machine M ′ (especially R does not run step 3 of the Turing
machine M ′). Therefore, the algorithm R always halts.

First note that the Turing machine M ′ rejects all strings x if x is not 011 and 110. Moreover, M ′

always accepts 011. Finally, on input 110, which is the reverse of 011: 110 = 011R, the Turing machine
M ′ will reach step 3 and run the Turing machine M on input w, where (M,w) is the input to the
algorithm R and is an instance of HALT, and accept 110 if and only if the Turing machine M halts on
w. In summary, if M halts on w, i.e., if (M,w) is a yes-instance of HALT, then the language accepted
by M ′ is {011, 110}, so 〈M ′〉 is a yes-instance of L, while if M does not halt on w, i.e., if (M,w) is
a no-instance of HALT, then on input 110, the Turing machine M ′ will be trapped in step 3 so will not
accept 110, so the language accepted by M ′ in this case is {011} and 〈M ′〉 is a no-instance of L.

Therefore, the algorithm R on an instance (M,w) of HALT produces an instance 〈M ′〉 of the lan-
guage L such that (M,w) is a yes-instance of HALT if and only if 〈M ′〉 is a yes-instance of L. Moreover,
R halts on all inputs. In conclusion, R is a mapping reduction from the undecidable problem HALT to
the language L. As a consequence, this proves that the language L is undecidable.

3. A useless state in a Turing machine is one that is never entered on any input string. Consider the
problem of determining whether a Turing machine has any useless states. Formulate this problem as a
language and show that it is undecidable.

Proof. We formulate the problem as the following language:

USELESS = {〈M, q〉 | q is a useless state of the Turing machine M}

Recall that the complement of the halting problem HALT:

NOT-HALT = {〈M,w〉 | The Turing machine M does not halt on input w}

is undecidable (in fact, as we showed in class, NOT-HALT is not even Turing-recognizable). To prove
the undecidability of the language USELESS, we construct a mapping reduction R from the undecidable
problem NOT-HALT to the problem USELESS, as follows: on an instance (M,w) of NOT-HALT, the
mapping reduction R constructs and outputs an instance (M ′, qacc) of USELESS, where qacc is the unique
accepting state of the Turing machine M ′. The Turing machine M ′ works as follows: on any input x, M ′

first runs the Turing machine M on input w, then enters the accepting state qacc of M ′ to accept its own
input x. Again, we emphasize that the mapping reduction R only produces the pair (M ′, qacc), i.e., the
encoding of the Turing machine M ′ and its accepting state qacc, not running M ′ on its input x. Thus, the
mapping reduction R can be computed by a Turing machine that halts on all inputs. It is easy to see that

2

the Turing machine M ′ cannot reach its accepting state qacc on any input x (i.e., qacc is a useless state of
M ′ so (M ′, qacc) is a yes-instance of USELESS) if and only if the Turing machine M does not halt on w
(i.e., (M,w) is a yes-instance of NOT-HALT). This verifies that R is indeed a mapping reduction from
NOT-HALT to USELESS. Since NOT-HALT is undecidable, we conclude that the language USELESS is
also undecidable.

4. (a) (CSCE 433 students only) Show that P is closed under union, concatenation, and complement.
(b) (CSCE 627 students only) Show that NP is closed under union and concatenation.

Proof.
(a) We first prove that the class P is closed under union and concatenation. Let L1 and L2 be two

languages in P. Thus, there are (deterministic) algorithms (i.e., Turing machines) M1 and M2 that accept
L1 in time O(nc) and L2 in time O(nd), respectively, where c and d are fixed constants. Now consider
the following algorithm M∪:

Turing Machine M∪(x)
1. run M1 on x;
2. if M1 accepts x then accept x;
3. run M2 on x;
4. if M2 accepts x then accept x;
5. reject x

It is easy to see that M∪ accepts x if and only if either M1 accepts x (i.e., x ∈ L1) or M2 accepts
x (i.e., x ∈ L2), that is, if and only if x ∈ L1 ∪ L2. Thus, the algorithm M∪ accepts the language
L1∪L2. Moreover, let a = max{c, d}, then a is also a fixed constant and the algorithm M∪ runs in time
O(nc + nd) + O(1) = O(na) (where the time O(1) is for the execution of steps 2, 4, and 5), i.e., M∪
runs in polynomial time. Finally, since both algorithms M1 and M2 are deterministic, the algorithm M∪
is also deterministic. Therefore, the language L1 ∪ L2 is accepted by the deterministic polynomial-time
algorithm M∪, i.e., L1 ∪ L2 is in the class P. This proves that the class P is closed under union.

Now consider the concatenation Lcat = {x | x = x1x2, x1 ∈ L1, x2 ∈ L2} of L1 and L2. The
difficulty here is that we do not know where to break the input x into x1 and x2 so that we can get
x1 ∈ L1 and x2 ∈ L2. To resolve this, we simply try all possible ways of breaking. The algorithm is
given as follows (note that if i = 0 then a1a2 · · · ai = ε and if i = n then ai+1ai+2 · · · an = ε):

Turing Machine Mcat(x)
\\ assume |x| = n and x = a1a2 · · · an

1. for (i = 0; i ≤ n; i++)
1.1. run M1 on a1a2 · · · ai;
1.2. if M1 accepts a1a2 · · · ai

1.3. then run M2 on ai+1ai+2 · · · an;
1.4. if M2 accepts ai+1ai+2 · · · an

1.5. then accept x;
2. reject x

If x = a1a2 · · · an is in Lcat, then there must be an index i0 such that a1a2 · · · ai0 ∈ L1 and
ai0+1ai0+2 · · · an ∈ L2. Thus, when the for-loop of the algorithm Mcat reaches i = i0, step 1.5 of
the algorithm will accept x. On the other hand, if x = a1a2 · · · an is not in Lcat, then for any index i,
at least one of the conditions a1a2 · · · ai ∈ L1 and ai+1ai+2 · · · an ∈ L2 will fail, so the algorithm must
reach step 2 and reject x. In conclusion, the algorithm Mcat accepts the language Lcat. The algorithm
Mcat is deterministic because both the algorithms M1 and M2 are deterministic. Finally, the for-loop in
the algorithm Mcat runs for n times, in each time it runs the algorithms M1 and M2 on inputs of length
bounded by n, thus taking O(na) time, where a = max{c, d}. As a result, the algorithm Mcat runs in

3

time O(n ·na) = O(na+1), which is a polynomial of n. Summarizing the above discussion, we conclude
that the language Lcat is accepted by the deterministic polynomial-time algorithm Mcat, so Lcat is in the
class P. This proves that the class P is closed under concatenation.

The case for complement is simple. Let L1 be the complement of the language L1, where L1 is in
the class P and accepted by a deterministic polynomial-time Turing machine M1. We simply swap the
accepting states and the rejecting states of the Turing machine M1 to get a new Turing machine M1.
Thus, the new Turing machine M1 accepts an input x if and only if the Turing machine M1 rejects
x, i.e., M1 accepts exactly the complement L1 of L1. Because M1 is a deterministic polynomial-time
algorithm, M1 is also a deterministic polynomial-time algorithm that accepts L1. This proves that the
complement L1 of the language L1 is also in the class P, thus, completing the proof that the class P is
closed under complement.

(b) Let L1 and L2 be two languages in the class NP. Thus, there are nondeterministic Turing ma-
chines M1 and M2 that accept L1 in time O(nc) and L2 in time O(nd), respectively, where c and d are
fixed constants.

To show that the class NP is closed under union, consider the following Turing machine M∪:
Turing Machine M∪(x)
1. nondeterministically pick one of steps (a) and (b):
(a) run M1 on x;
(b) run M2 on x.

The Turing machine M∪ is nondeterministic because of step 1 and because the Turing machines M1

and M2 are nondeterministic. Moreover, the running time of the Turing machine M∪ is bounded by the
sum of that of M1 and M2, i.e., by O(nc + nd) = O(na), where a = max{c, d} is a fixed constant.
Thus, M∪ is a nondeterministic polynomial-time Turing machine.

We must carefully verify that the Turing machine M∪ accepts the union L1 ∪ L2 of L1 and L2. For
this, we must verify that for any x ∈ L1 ∪ L2, there is a computational path of M∪ that accepts x, while
for x 6∈ L1 ∪ L2, all computational paths of M∪ reject x.

Let x ∈ L1 ∪ L2. Then either x ∈ L1 or x ∈ L2. Without loss of generality, suppose x ∈ L1. Since
M1 accepts L1, on the input x, there must be a computational path P1 of M1 that accepts x. Now the
computational path P∪ of M∪ on input x that in step 1 (nondeterministically) takes step (a) to run M1 on
x then follows the computational path P1 of M1 will accept x. Therefore, for any x ∈ L1 ∪ L2, there is
a computational path of M∪ that accepts x.

On the other hand, suppose x 6∈ L1 ∪ L2, i.e., x 6∈ L1 and x 6∈ L2. Then no computational path
of M1 and M2 on input x would accept x. Thus, for the Turing machine M∪ on input x, no matter
which of step (a) or step (b) is taken, and no matter which computational path of M1 or M2 is followed,
the corresponding computational path of M∪ will reject x. Thus, all computational paths of the Turing
machine M∪ will reject x.

This verifies that the nondeterministic polynomial-time Turing machine M∪ accepts the language
L∪, i.e., the language L∪ is in the class NP. In conclusion, the class NP is closed under union.

To show that NP is closed under concatenation, consider the following Turing machine Mcat:

Turing Machine Mcat(x)
\\ assume |x| = n and x = a1a2 · · · an

1. nondeterministically pick an integer i, 0 ≤ i ≤ n;
2. run M1 on a1a2 · · · ai;
3. if the computational path of M1 rejects a1a2 · · · ai then reject x;
4. run M2 on ai+1ai+2 · · · an;
5. if the computational path of M2 rejects ai+1ai+2 · · · an then reject x;
6. accept x

4

The Turing machine M∪ is nondeterministic because of step 1 and because the Turing machines M1

and M2 are nondeterministic. Moreover, the running time of the Turing machine M∪ is bounded by the
sum of that of M1 and M2 (note that Mcat runs each of M1 and M2 only once), i.e., by O(nc + nd) =
O(na), where a = max{c, d} is a fixed constant. Thus, M∪ is a nondeterministic polynomial-time
Turing machine.

To verify that Turing machine Mcat accepts the language Lcat = {x | x = x1x2, x1 ∈ L1, x2 ∈ L2},
which is the concatenation of L1 and L2, let x = a1a2 · · · an be in Lcat. Then there must be an index
i0 such that a1a2 · · · ai0 ∈ L1 and ai0+1ai0+2 · · · an ∈ L2. Now for the computational path of Mcat

that takes the index i = i0 in step 1, the Turing machine M1 in step 2 will accept a1a2 · · · ai0 so it will
reach step 4 to run M2 that will accept ai0+1ai0+2 · · · an ∈ L2. Thus, this computational path of Mcat

will eventually reach step 6 and accept x. On the other hand, if x = a1a2 · · · an is not in Lcat, then
for any index i (nondeterministically picked at step 1 of the Turing machine Mcat), at least one of the
conditions a1a2 · · · ai ∈ L1 and ai+1ai+2 · · · an ∈ L2 will fail, so the algorithm Mcat will either reject
at step 3 or reject at step 5, no matter which computational path of M1 and M2 is followed. That is,
all computational paths of the Turing machine Mcat will reject x. This proves that the nondeterministic
polynomial-time Turing machine Mcat accepts the concatenation Lcat of L1 and L2, thus, Lcat is in the
class NP. This completes the proof that the class NP is closed under concatenation.

5. (a) (CSCE 433 students only) Let COMPOSITE = {N | N > 0 is an integer but not a prime}. Prove
that the language COMPOSITE is in NP.

(b) (CSCE 627 students only) Two graphs G and H are isomorphic if the vertices of G may be
renamed so that G becomes identical to H . Prove that the following language is in NP:

ISOMORPHISM = {〈G,H〉 | G and H are isomorphic}.

Proof.
(a) For this question, we need some more detailed and careful understanding of the representation

of instances of the problem COMPOSITE. If an integer N > 0 is given as a binary number, then it has
blog2Nc + 1 bits. If N is given as an instance of COMPOSITE, then its length is n = blog2Nc +
1 ≈ log2N . Therefore, when we say that an algorithm solves the problem COMPOSITE in polynomial
time, we really mean that the algorithm runs in time that is bounded by a polynomial of the length
n = |N | ≈ log2N of the input integer N . Thus, to prove that the problem COMPOSITE is in NP, we
need to present a nondeterministic algorithm that solves the problem COMPOSITE in time polynomial of
log2N on an input integer N .

The idea of the algorithm is simple: to prove that N is not a prime, we need to find an integer N ′
such that 1 < N ′ < N and that N ′ divides N . Because our algorithm is nondeterministic, we can simply
“guess” the integer N ′. The algorithm is given as follows:

NotPrime(N)
\\ N is an integer, and n = |N |
1. nondeterministically guess an integer N ′ of at most n bits;
2. if (N ′ ≤ 1) or (N ′ ≥ N) then reject N;
3. If (N ′ does not divide N) then reject N;
4. accept N.

We give explanations for the above algorithm, prove its correctness, and analyze its complexity. If
N is not a prime, i.e., if N is a yes-instance of COMPOSITE, then there must be an integer N0 such that
1 < N0 < N and that N0 divides N . In this case, the computational path of the algorithm NoPrime that
correctly guessed this N0 in step 1 will not reject N in steps 2-3 so will reach step 4 and accept N . Thus,

5

for a yes-instance of COMPOSITE, there is at least one computational path of NotPrime(N) that accepts
N . On the other hand, if N is a no-instance of COMPOSITE, i.e., if N is a prime, then each computational
path of NotPrime that picks an integer N ′ in step 1, will either find out that N ′ is not a proper integer
(i.e., N ′ does not satisfy 1 < N ′ < N) then reject N in step 2, or get a proper N ′ (i.e., 1 < N ′ < N) but
find out that N ′ does not divide N (because N is a prime) so reject N in step 3. In conclusion, if N is a
no-instance of COMPOSITE, then all computational paths of NotPrime(N) will reject N . This verifies
that the nondeterministic algorithm NotPrime accepts the language COMPOSITE.

What that still remains is to show that the algorithm NotPrime runs in time polynomial of n =
log2N , where n is the number of bits of the binary representation of the integer N . Step 1 takes time
O(n) because we can guess a binary bit 0 or 1 in constant time. Step 2 also takes time O(n) because
we can compare two binary numbers of at most n bits in time O(n). Step 3 can be implemented using
the division algorithm we learned in elementary school, which takes time O(n2) (students: please verify
this). Therefore, each computational path of the algorithm NotPrime runs in time O(n2). Thus,
NotPrime is a nondeterministic polynomial-time algorithm that accepts the language COMPOSITE.

This completes the proof that the language COMPOSITE is in the class NP.

(b) Assume that the vertices of the graph G are labeled a1, a2, . . ., an, while the vertices of the
graph H are labeled b1, b2, . . ., bn (note that if G and H have different numbers of vertices, then 〈G,H〉
is obviously a no-instance of ISOMORPHISM). What we need is a one-to-one mapping h from the vertex
set {a1, a2, . . . , an} of the graph G to the vertex set {b1, b2, . . . , bn} of the graph H that relabels the
vertex ai of G by the vertex f(ai) of H so that G becomes identical to H . Again, this mapping h can be
“guessed” using nondeterminism. The algorithm is given as follows:

ISOM(G,H)
\\ the vertex set of the graph G is {a1, a2, . . . , an}, and
\\ the vertex set of the graph H is {b1, b2, . . . , bn}
1. for (i = 1; i ≤ n; i++)

nondeterministically guess an integer k, 1 ≤ k ≤ n, and let h(i) = k;
2. if {h(1), h(2), . . . , h(n)} 6= {1, 2, . . . , n} then reject (G,H);
3. for (i = 1; i ≤ n; i++)

for (j = 1; j ≤ n; j++)
if (ai and aj are adjacent in G but bh(i) and bh(j) are not adjacent in H) or

(ai and aj are not adjacent in G but bh(i) and bh(j) are adjacent in H)
then reject (G,H);

4. accept (G,H).

We give explanations for the above algorithm, prove its correctness, and analyze its complexity. If
the graphs G and H are isomorphic, i.e., if (G,H) is a yes-instance of ISOMORPHISM, then there is
a one-to-one mapping h that maps each vertex ai in G to its corresponding vertex bh(i) in H , such
that for any i and j, the vertices ai and aj in G are adjacent if and only if the vertex bh(i) and bh(j)
in H are adjacent. Therefore, for the computational path of ISOM(G,H) that for every i has guessed
the correct h(i) in step 1, the algorithm ISOM(G,H) will pass all the tests in steps 2-3, and reach
step 4 and accept the input (G,H). Thus, for a yes-instance of ISOMORPHISM, there is at least one
computational path of ISOM(G,H) that accepts (G,H). On the other hand, if (G,H) is a no-instance
of ISOMORPHISM, i.e., if the graphs G and H are not isomorphic, then each computational path of
ISOM that picks a mapping h in step 1, will either find out that h is not a one-to-one mapping (i.e.,
{h(1), h(2), . . . , h(n)} 6= {1, 2, . . . , n}) then reject (G,H) in step 2, or get a one-to-one mapping h in
step 1 but find out that h cannot keep the adjacency relations in the graphs G and H (i.e., for some i
and j, either ai and aj are adjacent in G but bh(i) and bh(j) are not adjacent in H , or ai and aj are not
adjacent in G but bh(i) and bh(j) are adjacent in H) so reject (G,H) in step 3. In conclusion, if (G,H) is
a no-instance of ISOMORPHISM, then all computational paths of ISOM(G,H) will reject (G,H). This
verifies that the nondeterministic algorithm ISOM accepts the language ISOMORPHISM.

6

For the complexity of the algorithm ISOM, first note that guessing an integer k between 1 and n takes
time O(log2 n) because the integer k has at most log2 n bits (see the discussion in the solution to (a) of
this question). As a result, step 1 of the algorithm ISOM takes time O(n log2 n). Step 2 of the algorithm
ISOM can be implemented by sorting the integers in {h(1), h(2), . . . , h(n)} to find out if all numbers are
distinct (recall that by step 1, we know that 1 ≤ h(i) ≤ n for all i). Thus, step 2 takes time O(n log2 n).
The loop-body of the double loop in step 3 is executed n2 time, and each execution of the loop-body takes
time O(1) (assume that the graphs G and H are given in their adjacency matrices so that vertex adjacency
can be tested in time O(1)). Thus, step 3 of the algorithm ISOM takes time O(n2). In summary, every
computational path of the algorithm ISOM runs in time O(n log2 n+n log2 n+n2) = O(n2), which is a
polynomial of n. Thus, ISOM is a nondeterministic polynomial-time algorithm that accepts the language
ISOMORPHISM.

This completes the proof that the language ISOMORPHISM is in the class NP.

7

