
CSCE-433 Formal Languages & Automata
CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen Senior Grader: Avdhi Shah
Office: PETR 428 Office: N/A
Phone: 845-4259 Phone: tba
Email: chen@cse.tamu.edu Email: avdhi.shah@tamu.edu
Office Hours: MWF 10:30–11:30am Office Hours: tba

Solutions to Assignment #5

1. Give implementation-level descriptions of Turing machines that decide the following languages over
the alphabet {0, 1}.

(a) (CSCE 433 students only) L433 = {w | w contains twice as many 0’s as 1’s}.
(b) (CSCE 627 students only) L627 = {w | w does not contain twice as many 0’s as 1’s}.

Solutions.
(a) We can use the following Turing machineM433 to accept the language L433: M repeatedly scans

the tape, and in each scan, it erases two 0’s and one 1. The transition function δ is given as follows.

(1) δ(qs, 0/1) = (q−, 0/1, ↓); (8) δ(q0,#) = (q0,#,→); (15) δ(q01, 0) = (qb,#,←);
(2) δ(q−, 0) = (q0,#,→); (9) δ(q1, 0) = (q01,#,→); (16) δ(q01, 1) = (q01, 1,→);
(3) δ(q−, 1) = (q1,#,→); (10) δ(q1, 1) = (q1, 1,→); (17) δ(q01,#) = (q01,#,→);
(4) δ(q−,#) = (q−,#,→); (11) δ(q1,#) = (q1,#,→); (18) δ(qb, 0/1) = (qb, 0/1,←);
(5) δ(q−,2) = (qacc,2, ↓); (12) δ(q00, 1) = (qb,#,←); (19) δ(qb,#) = (qb,#,←);
(6) δ(q0, 0) = (q00,#,→); (13) δ(q00, 0) = (q00, 0,→); (20) δ(qb,2) = (q−,2,→).
(7) δ(q0, 1) = (q01,#,→); (14) δ(q00,#) = (q00,#,→);

Thus, the Turing machine isM433 = (Q,Σ, δ, qs, qacc, qrej), whereQ = {qs, q−, q0, q1, q00, q01, qb},
and Σ = {0, 1,#,2} (2 is the blank symbol). Note that we use qs instead of q0 as the start state for
notational convenience. The state q− is for the case where the number of erased 0’s is twice the number
of erased 1’s. The state q0 (respectively, q1, q00, and q01) is for the case where a new 0 (respectively, a
new 1, two new 0’s, and a new 0 and a new 1) has been erased. Note that the machine M “erases” a 0
or a 1 by overwriting it with the symbol #. Once two 0’s and one 1 are erased, the machine M goes to
state qb (lines (12) and (15)), which moves the head back to the beginning of the input and restarts with
the state q− (lines (18)-(20)). In particular, if in the state q−, we see the end of the input, i.e., the right
2 after the input, then we have erased all 0’s and the 1’s, and the number of erased 0’s is just twice that
of erased 1’s, so the machine M accepts (line (5)). Note that for all states q′ and symbols a′ such that
δ(q′, a′) is not given in the above list, we implicitly define δ(q′, a′) = (qrej , a

′, ↓). In particular, we have

δ(q0,2) = δ(q1,2) = δ(q00,2) = δ(q01,2) = (qrej , a
′, ↓),

which shows the cases when we reach the end 2 of the input with all 0’s and 1’s erased, but the number
of erased 0’s is not exactly twich the number of erased 1’s – so we should reject.

1



(b) Please read the discutions and explanations in the solution to (a) above. Note that L627 is just
the complement of L433. Thus, we can simply swap the accept state qacc and the reject state qrej of the
Turing machine M433 in (a), which will give a Turing machine M627 that accepts L627 (note that M433

is deterministic). The Turing machine for the language L627 is M627 = (Q,Σ, δ, qs, qacc, qrej), where
Q = {qs, q−, q0, q1, q00, q01, qb}, and Σ = {0, 1,#,2}. The transition function δ is given as follows.

(1) δ(qs, 0/1) = (q−, 0/1, ↓); (9) δ(q1, 0) = (q01,#,→); (17) δ(q01, 0) = (qb,#,←);
(2) δ(q−, 0) = (q0,#,→); (10) δ(q1, 1) = (q1, 1,→); (18) δ(q01, 1) = (q01, 1,→);
(3) δ(q−, 1) = (q1,#,→); (11) δ(q1,#) = (q1,#,→); (19) δ(q01,#) = (q01,#,→);
(4) δ(q−,#) = (q−,#,→); (12) δ(q1,2) = (qacc,2, ↓); (20) δ(q01,2) = (qacc,2, ↓);
(5) δ(q0, 0) = (q00,#,→); (13) δ(q00, 0) = (q00, 0,→); (21) δ(qb, 0/1) = (qb, 0/1,←);
(6) δ(q0, 1) = (q01,#,→); (14) δ(q00, 1) = (qb,#,←); (22) δ(qb,#) = (qb,#,←);
(7) δ(q0,#) = (q0,#,→); (15) δ(q00,#) = (q00,#,→); (23) δ(qb,2) = (q−,2,→);
(8) δ(q0,2) = (qacc,2, ↓); (16) δ(q00,2) = (qacc,2, ↓); (24) δ(q−,2) = (qrej ,2,→).

Note that the machine M627 rejects only when it has erased all 0’s and 1’s in the input, but is in the
state q− (line (24)), which is the case that in the input the number of 0’s is exactly twice that of 1’s.

2. Show that the collection of (Turing-)decidable languages is closed under the operations of (a) com-
plementation, and (b) intersection. Use the solution for Problem 3.15(a) in the textbook (page 191) as a
guide for the level of details needed in your solutions.

Proof.
(a) To show that the collection of decidable languages is closed under complementation, let L be a

decidable language. Thus, L is accepted by a deterministic Turing machine M = (Q,Σ, δ, q0, qacc, qrej)
that halts on all inputs. Since the Turing machine M is deterministic, for every input x, if x ∈ L,
then the (unique) computational path of M on input x runs and stops at its accepting state qacc, while if
x 6∈ L, then the (unique) computational path of M on input x runs and stops at its rejecting state qrej .
Now we swap the accepting state qacc and the rejecting state qrej in M , we get a new Turing machine
M ′ = (Q,Σ, δ, q0, q

′
acc, q

′
rej), where q′acc = qrej and q′rej = qacc (i.e., M ′ has the same state set Q, the

same alphabet Σ, the same transition function δ, and the same start state q0. However, M ′ uses qrej as
its accepting state and qacc as its rejecting state). Note that the Turing machine M ′ is also deterministic.
On any input x, if x ∈ L, then the (unique) computational path of M ′ on input x runs and stops at its
rejecting state q′rej = qacc, while if x 6∈ L, then the (unique) computational path of M ′ on input x runs
and stops at its accepting state q′acc = qrej . Thus, the Turing machine M ′ accepts exactly the language
L that is the complement of L. Since the Turing machine M ′ halts on all inputs, the language L is
decidable. This completes the proof that the complement L of a decidable language L is also decidable,
i.e., the collection of decidable languages is closed under complementation.

(b) To show that the collection of decidable languages is closed under intersection, let L1 and L2 be
two decidable languages. Thus, L1 and L2 are accepted by deterministic Turing machines M1 and M2,
respectively, where bothM1 andM2 halt on all inputs. Now consider the following Turing machineM∩:

M∩ on input x
(1) run M1 on x, if M1 rejects x, then reject;
(2) run M2 on x, if M2 rejects x, then reject;
(3) accept x.

2



By our assumption, the Turing machines M1 and M2 halt on all inputs. Thus, if the algorithm reaches
step (3), then both Turing machines M1 and M2 accept the input x (in steps (1) and (2), respectively),
i.e., x ∈ L1 ∩L2. On the other hand, if x 6∈ L1 ∩L2, then either M1 or M2 would reject x so the Turing
machine M∩ would reject x in either step (1) or step (2). In conclusion, the Turing machine M∩ accepts
the language L1 ∩L2. Finally, the Turing machine M∩ halts on all inputs since the Turing machines M1

and M2 halt on all inputs. This proves that the language L1 ∩ L2 is decidable. As a consequence, the
collection of decidable languages is closed under intersection.

3. Show that the collection of Turing-recognizable languages is closed under the operation of intersec-
tion. Use the solution for Problem 3.16(a) in the textbook (page 191) as a guide for the level of details
needed in your solutions.

Proof. To show that the collection of Turing-recognizable languages is closed under intersection, let
L1 and L2 be two Turing-recognizable languages, which are recognized by two deterministic Turing
machines M1 and M2, respectively, where for each i = 1, 2, if x ∈ Li, then the Turing machine Mi on
input x will stop at its accepting state, while if x 6∈ Li, then the Turing machine Mi on input x will either
stop at its rejecting state or loop without stopping. Now consider the following Turing machine M∩:

M∩ on input x
(1) run M1 on x, if M1 rejects x, then reject;
(2) run M2 on x, if M2 rejects x, then reject;
(3) accept x.

We show that the Turing machineM∩ recognizes the languageL1∩L2. Let x ∈ L1∩L2, then x ∈ L1 and
x ∈ L2. Thus, both Turing machinesM1 andM2 on the input x accept x (i.e., halt at their corresponding
accepting states). As a consequence, on the input x ∈ L1 ∩ L2, step (1) of the Turing machine M∩ will
not run into a dead loop, but eventually find out that the Turing machine M1 accepts x. Thus, step (1)
of M∩ will not reject x but eventually move to step (2). Similarly, step (2) of M∩ will not reject x but
eventually move to step (3), which will accept x. This shows that for an input x ∈ L1 ∩ L2, the Turing
machine M∩ will accept x and halt.

Now consider an input x 6∈ L1 ∩ L2. We have either x 6∈ L1 or x 6∈ L2 (or both). If x 6∈ L1, then in
step (1) of M∩, either (i) M1 halts and rejects x – so M∩ rejects x, or (ii) M1 on x runs into a dead loop
– then M∩ on x also runs into a dead loop without stopping. Similarly, if x 6∈ L2, then step (2) of M∩,
thus the Turing machine M∩, will either reject x or run into a dead loop. Summarizing the discussion,
for x 6∈ L1 ∩ L2, the Turing machine M∩ on x will either reject x or run into a dead loop.

Combining the above discussions, we conclude that the Turing machineM∩ recognizes the language
L1 ∩ L2, i.e., the language L1 ∩ L2 is Turing-recognizable. This completes the proof that the collection
of Turing-recognizable languages is closed under intersection.

Remark. Comparing Questions 2 and 3, you might wonder why we were not asked to prove that
the collection of Turing-recognizable languages is closed under complementation, as we did for the
collection of decidable languages. The reason is that the collection of Turing-recognizable languages is
not closed under complementation. Students are invited to think why a proof similar to that for Question
2(a) on decidable languages will not work for Turing-recognizable languages.

Question 5 in this homework set will also give a hint that the collection of Turing-recognizable
languages is not closed under complementation: it claims that if the collection of Turing-recognizable
languages is closed under complementation, then every Turing-recognizable language is decidable.

3



4. Prove that the following languages are decidable.

(a) (CSCE 433 students only) L433 = {〈A〉 | A is a DFA and L(A) = Σ∗}.
(b) (CSCE 627 students only) L627 = {〈G〉 | G is a CFG that generates ε}.

Proof.
(a) Note that for a DFA A, L(A) = Σ∗ if and only if the complement L(A) of L(A) is the empty

language ∅. Thus, we only need to construct a DFA A that accepts the complement of L(A) then test if
A accepts the empty language ∅. As we studied in class, the construction of the DFA A to accept L(A)
is quite easy: we simply swap the final states and the non-final states in A (note that A is deterministic).
Finally, as given in the textbook, checking whether the DFA A accepts the empty language ∅ can be
implemented by checking whether there is path in the DFA A from the start state to a finite state, which
can be done using, for example, Depth-First Search on the state diagram of A, starting from the start
state of A. The algorithm (i.e., Turing machine) M433 is given as follows:

M433 on input 〈A〉
1. construct 〈A〉, where A is the DFA that accepts L(A). This can be done by swapping

the final states and the non-final states in the DFA A;
2. construct the state diagram G(A) for the DFA A;
3. if (there is a path from the start state to a final state in G(A))

then reject else accept.

As explained above, this Turing machine M433 correctly accepts the language L433. Moreover, there is
no place to make the Turing machine M433 run into dead loop, i.e., the Turing machine M433 halts on all
inputs. Thus, the language L433 accepted by this Turing machine M433 that always halts is decidable.

(b) One way to prove this is to first convert the given CFG G into an equivalent CFG G′ in Chomsky
Normal Form, where we assume that the start variable of G′ is S′. The algorithm for converting a
CFG into an equivalent CFG in Chomsky Normal From is given in the textbook (Theorem 2.9, page
109), which was also discussed in detail in our class. Note that the CFG G′ in Chomsky Normal Form
generates ε if and only if it has a production rule S′ → ε (where S′ is the start variable of G′), which can
be easily checked. This then completes the proof that the language L627 is decidable.

We can also give a direct proof that is based on an algorithm that repeatedly eliminates production
rules of the form X → ε, where X is not the start variable. The algorithm uses the same ideas to
eliminate production rules of the form X → ε for non-start variables X , as used in the proof of Theorem
2.9 in the textbook. The algorithm (i.e., the Turing machine) M627 is given as follows.

M627 on input 〈G〉, where G is a CFG with a start variable S
1. let P be the set of all production rules for G;
2. while (there is a production rule X → ε in P , where X 6= S)

delete X → ε in P ;
for (each production rule of the form Y → αXβ)

if (Y → αβ is not in P ) then add Y → αβ to P ;
3. if (S → ε is in P )

then accept else reject.

The correctness of the Turing machine M627 can be proved using induction on the number of production
rules of the form X → ε in the set P , which is omitted here. To see that the Turing machine M627 halts
on all inputs, note that we neither introduce new symbols nor add production rules to P that are longer
(i.e., containing more symbols on its right side) than the production rules in the original CFG G. Thus,

4



for a given CFG G, the number of production rules that can be added is a finite number, which implies
that the while-loop in step 2 will eventually terminate and move to step 3, which will stop the Turing
machineM627. This completes the proof that the language L627 is accepted by the Turing machine M627

that halts on all inputs. As a consequence, the language L627 is decidable.

5. Prove: let L be a language such that both L and the complement L of L are Turing-recognizable, then
L is decidable. The level of details of your proof should be similar to that for Questions 2-3 above.

Proof. Since both L and L are Turing-recognizable, there are two deterministic Turing machines M and
M such that for any x ∈ L, the Turing machine M on input x runs in a finite number of steps then halts
and accepts x (on the other hand, the Turing machine M on x may halt and reject x or run into a dead
loop), while for any y ∈ L, i.e., y 6∈ L, the Turing machine M on input y runs in a finite number of
steps then halts and accepts y (again, the Turing machineM on y may halt and reject y or run into a dead
loop). Now consider the following Turing machine M ′:

M ′ on input x
1. k = 1;
2. loop
2.1 run M on x for k steps, if M accepts x in no more than k steps, then accept;
2.2 run M on x for k steps, if M accepts x in no more than k steps, then reject;
2.3 k = k + 1.

Note that for each fixed k, steps 2.1 and 2.2 run the Turing machines M and M , respectively, at most k
steps. Thus, for each fixed k, the execution of steps 2.1 and 2.2 can never run into a dead loop.

We show that the Turing machine M ′ accepts the language L and halts on all inputs. Let x be any
input to M ′. If x ∈ L, then the Turing machine M accepts x in a finite number k1 of steps. Thus, when
step 2 of the Turing machine M ′ reaches the number k = k1, step 2.1 of the Turing machine M ′ will
find out that M accepts x in no more than k1 steps, so M ′ accepts x (and halts) at step 2.1. On the other
hand, if x 6∈ L, i.e., if x ∈ L, then the Turing machine M accepts x in a finite number k0 of steps. Thus,
when step 2 of the Turing machine M ′ reaches the number k = k0, step 2.1 of the Turing machine M ′

will find out thatM accepts x in no more than k0 steps, soM ′ rejects x (and halts) at step 2.2. Therefore,
for any input x, the Turing machine M ′ on input x will always halt, accepts x if x ∈ L and rejects x if
x 6∈ L. Therefore, the language L is accepted by the Turing machine M ′ that halts on all inputs. This
proves that the language L is decidable.

Remark. This remark echoes the remark in Question 3. The result of Question 5 shows that if
the collection of Turing-recognizable languages is closed under complementation, then every Turing-
recognizable language would be also decidable. This, as we have seen in class, is not true. For example,
the HALTING problem is Turing-recognizable but not decidable.

5


