
CSCE-433 Formal Languages & Automata
CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen Senior Grader: Avdhi Shah
Office: PETR 428 Office: N/A
Phone: 845-4259 Phone: tba
Email: chen@cse.tamu.edu Email: avdhi.shah@tamu.edu
Office Hours: MWF 10:30–11:30am Office Hours: tba

Solutions to Assignment #4

1. Give a regular (i.e., left-linear) grammar for each of the following languages:
(a) all strings over {a, b} that do not contain ab;
(b) (CSCE 433 students only) all strings over {a, b} that contain at least one a and every a

is immediately followed by at least one b;
(c) (CSCE 627 students only) all strings over {a, b} with an even number of a’s and an odd

number of b’s

Solutions.
(a) Once an a occurs in such a string, there cannot be a following b, so another way to think of this

set is as b∗a∗ (thus, it is actually a regular language). The following grammar first generates a sequence
of b’s, and then generates a sequence of a’s. Note that this grammer is actually a regular grammar.

S → ε | b | bS | a | aA
A → a | aA

(b) The following grammar first generates a sequence of b’s (using S), then generates an a followed
by a sequence of b’s (using B), and then has the option to go back to S to repeat:

S → bS | aB
B → b | bB | bS

(c) We introduce four variables Xeaob, Xeaeb, Xoaob, and Xoaeb, where the variable Xeaob is for
strings with an even number of a’s and an odd number of b’s. Similar interpretations are for the variables
Xeaeb, Xoaob, and Xoaeb. Thus, the grammer can be (where Xeaob is the start variable):

Xeaob → aXoaob | bXeaeb

Xeaeb → aXoaeb | bXeaob | ε
Xoaeb → aXeaeb | bXoaob

Xoaob → aXeaob | bXoaeb

1

2. Convert the following regular grammar into an NFA:

S → aS | aX | a
X → bS | aY
Y → bS

Solution. The NFA is given in the following state diagram, where the states are named using the same
symbols for the corresponding variables in the grammar.

��
��
S-

k
R a

��
��
����F-a

��
��
X ��

��
Y-a

�

b

a

@
@
@

@
@
@@I

b

3. Given informal descriptions and state diagrams of pushdown automata for the following languages. (For exam-
ples of informal descriptions, see the solutions to Exercise 2.7 on page 160 of the textbook.)

(a) L1 = {wcwR|w ∈ {a, b}∗}. So the set of terminals is {a, b, c};
(b) (CSCE 433 students only) L2 is the set of all binary strings with twice as many 0’s as

1’s (with no restriction on the order in which the 0’s and 1’s occur);
(c) (CSCE 627 students only) L3 = {0n1n|n ≥ 1} ∪ {0n12n|n ≥ 1}.

Solutions.
(a) We construct a 4-state PDA M to accept the language L1 = {wcwR|w ∈ {a, b}∗}.
(1) state q0: the start state, which pushes $ into the stack to mark the bottom of the stack, then moves to state

q1 to initialize the process;
(2) state q1: it collects the symbols a and b in the string w before the symbol c, and pushes them into the stack.

It moves to state q3 when it sees the symbol c (without pushing c into the stack). Note that at this point, if you read
the stack from the top to the bottom, you get the reverse wR of the string w stored in the stack;

(3) state q2: it checks if each symbol in the input after the symbol c matches the corresponding symbol stored
in the stack, from stack top to bottom, until it sees the bottom mark $ in the stack and the end mark ↓ of the input,
which is a sufficient and necessary condition for the input to be of the form wcwR for a string w ∈ {a, b}∗, i.e., to
be in the language L1. In this case, the PDA accepts the input at the final state q3.

(4) state q3: the final (i.e., accepting) state.

The state diagram of the PDA is given in the following figure.

-��
��
q0 ��
��
q1-ε, ε→ $

k
R

a, ε→ a

kI
b, ε→ b

��
��
q2-c, ε→ ε

k
R

a, a→ ε

kI
b, b→ ε

��
��
����q3-↓, $→ ε

2

(b) We construct a PDA to accept the language L2 of all binary strings with twice as many 0’s as 1’s.
The idea here is to treat each 0 as a − 1

2 , then “add” all numbers in the input to see if it sums 0. Because we
can use only a finite number of stack symbols, we introduce four stack symbols h+ (for + 1

2), 1+ (for +1), h− (for
− 1

2), and 1− (for −1), and perform local computations in the stack while we are reading the input. For example,
if the stack top symbol is h− (i.e., − 1

2) and the current input symbol is 0 (i.e., another − 1
2), then we change the

stack top symbol to 1− to include the value for the current input symbol 0. Note that this is implemented by a PDA
transition function δ(q1, 0, h−) = (q1, 1

−), or, in the state diagram notation, “0, h− → 1−”.
This idea is implemented by the PDA whose state diagram is given in the following figure. The start state q0

pushes $ into the stack to initialize the process. The main state is state q1, which applies the local computations as
described above to add the values in the input (thus, 0 is treated as − 1

2 while 1 is treated as +1). You should check
the transitions given for the self-loop at the state q1 to convince yourself that they cover all possible cases correctly.
Some of the transitions are briefs of more than one transitions. For example, “1, $→ 1+$” is really implemented
by two transitions δ(q1, 1, $) = (q′1, $) and δ(q′1, ε, ε) = (q1, 1

+), where q′1 is a new state, i.e., we push the symbol
1+ into the stack without popping $ out. Even more complicated, “1, h−$→h+$” means that if the input symbol
is 1, the stack top symbol is h−, while the symbol below the top symbol h− is the stack bottom mark $, then we
replace the top symbol h− by the symbol h+ (i.e., the total value of the stack was − 1

2 before we see the new input
symbol 1. Thus, adding the new value 1 in the input to the stack should give the total stack value + 1

2).
Finally, when the PDA reaches the input end ↓ and sees the stack bottom $, which means that the total stack

value is 0, it accepts.

����q1
����q0-

�������qa
Q
Q
Qs

�
�
�+

ε, ε→ $

↓, $→ ε
��
��
I

0, $→h−$;
0, 1+→h+;
0, 1−→h−1−;
0, h+→ε;
0, h−→1−;

1, $→1+$;
1, 1+→1+1+;
1, 1−→ε;
1, h+→h+1+;
1, h−$→h+$;
1, h−1−→h−.

(c) We construct a PDA to accept the language L3 = {0n1n|n ≥ 1} ∪ {0n12n|n ≥ 1}
The difficulty here is that we do not know in advance which of the patterns 0n1n and 0n12n we are looking for.

We use nondeterminism to help. The start state q0 nondeterministically moves to states q1 and q2, and in both cases,
pushes the symbol $ to mark the stack bottom. That is, the transition function here is δ(q0, ε, ε) = {(q1, $), (q2, $)}.
We use q1 to deal with the pattern 0n1n while use q2 to deal with the pattern 0n12n. Thus, in state q1, we push a
symbol 0 into the stack when we see a 0 in the input. Once we see a symbol 1 in the input, then the state q1 (for the
pattern 0n1n) should check that the number of 1’s in the remaining of the input is equal to the number of 0’s stored
in the stack. On the other hand, in state q2, we push two 0’s into the stack when we see each 0 in the input. Again
when we see a symbol 1 in the input, then the state q2 (for the pattern 0n12n) should expect that the number of 1’s
in the remaining of the input is equal to the number of 0’s stored in the stack. Thus, at this point, both cases need
the same process (i.e., checking the number of 1’s in the input is equal to the number of 0’s stored in the stack). So
both states q1 and q2, when seeing a 1 in the input, can go to the same state q3, which checks the number of 1’s in
the input with the number of 0’s in the stack. Thus, if the input is in the language L3, then at the end ↓ of the input,
we should see the bottom mark $ in the stack. The state diagram is given in the following figure.

-����q0 �
�
�3

Q
Q
Qs

ε, ε→ $

ε, ε→ $

����q1

����q2
����q3

Q
Q
Qs

�
�
�3

1, 0→ ε

1, 0→ ε

�������q4
Q
Q
QQs
↓, $→ ε

k�
0, ε→ 00

k
	

0, ε→ 0

k
i

1, 0→ ε

3

4. Convert the following CFG into an equivalent PDA:

E → E + T | T
T → T ∗ F | F
F → (E) | a

Solution. As we discussed in class, the PDA works for the grammar as follows. First, it pushes a bottom mark
$ then the start variable (here the state variable is E) into the stack, and moves to state q1 for the main process.
According to the algorithm given in the class, if the stack top symbol is a terminal (note that there are five terminals
in this grammar: +, ∗, (,), a), then the state q1 should check if it matches the current input symbol. On the other
hand, if the stack top symbol is a variable X (regardless what is the input symbol), then the state q1 (nondeter-
ministically) substitutes the variable X by the right-hand side of an X-production. For example, if the stack top
symbol is E, then we nondeterministically substitute this E using the two productions of E (i.e.,E → E+T | T),
which give E+T and T , respectively (that is, the transition function is δ(q1, ε, E) = {(q1, E+T), (q1, T)}). This
process continues until we see the end mark ↓ of the input and the bottom mark $ of the stack, which means we
have successfully derive the input from the start variable E, i.e., the input is a string derivable from the grammar.

The state diagram of the PDA is given in the following figure.

����q1
����q0-

�������qa
Q
Q
Qs

�
�
�+

ε, ε→ E $

↓, $→ ε
��
��
I

ε, E→E + T ;
ε, E→T ;
ε, T→T ∗ F ;
ε, T→F ;
ε, F→(E);
ε, F→a;

+,+→ε;
∗, ∗→ε;
(, (→ε;
),)→ε;
a, a→ε;

5. Use the pumping lemma for context-free languages to prove that the following languages are not context-free:

(a) {0n1n0n1n | n ≥ 0};
(b) {w1cw2c . . . cwk | k ≥ 2, each wi ∈ {a, b}∗ and wi = wj for some i 6= j}. The alphabet is {a, b, c}. Each

string in the language consists of at least two substrings of a’s and b’s, the substrings are separated by c’s,
and at least two of the substrings are equal;

(c) the set of all strings over {a, b, c, d} such that the number of a’s equals the number of b’s, and the number
of c’s equals the number of d’s. Note that there is no restriction on the order in which the symbols occur.

Proof.
(a) The language L1 = {0n1n0n1n|n ≥ 0}.
Assume the contrary that the language L1 is context-free, and let p be the pumping number for L1. Consider

the string s = 0p1p0p1p, which is in L1. By the pumping lemma, the string s can be written as s = uvxyz with
|vxy| ≤ p and |vy| > 0, and uvixyiz ∈ L1 for all i ≥ 0. We call each of the substrings of s that are of the forms
0p or 1p a “block” of s.

Case 1. v and y are both contained in the same block. For example, suppose that v and y are both contained
in the first block 0p, then, since |vy| > 0, the string uv2xy2z would have more 0’s in the first block then the 1’s in
the second block, so it is not a string in the language L1. This gives a contradiction. The cases where v and y are
both contained in the other blocks can lead to a contradiction using a similar analysis.

Case 2. v is contained in one block and y is contained in a different block. Since |vxy| ≤ p, these two blocks
must be adjacent. For example, assume that v is in the first block 0p and y is in the second block 1p. Then, since
|vy| > 0, in the string s2 = uv2xy2z, the number of 0’s and the number of 1’s in the first two blocks cannot be
equal to that in the last two blocks, which gives a string not in the language L1, deriving a contradiction. The cases
where v and y are contained in other two adjacent blocks can lead to a contradiction using a similar analysis.

Case 3. Excluding Cases 1-2, then at least one of v and y crosses the boundary of two adjacent blocks. Since
|vxy| ≤ p, the other of v and y must be entirely contained in a single block. For example, assume v crosses the
boundary of the first block 0p and the second block 1p (which also implies that v is not empty), and y is entirely

4

contained in the second block 1p. Then the string s2 = uv2xy2z would have more than four blocks that consist of
either consecutive 0’s or consecutive 1’s, which gives a string not in the language L1. This is a contradiction. The
cases where v crosses the boundary of other two adjacent blocks and where y crosses the boundary of two adjacent
blocks can lead to a contradiction using a similar analysis.

In summary, in all possible cases, we would derive a contradiction. As a result, our assumption that the
language L1 is context-free cannot be true. This proves that the language L1 is not context-free.

(b) The language L2 = {w1cw2c . . . cwk|k ≥ 2, each wi ∈ {a, b}∗ and wi = wj for some i 6= j}.
Assume the contrary that the language L2 is context-free. and let p be the pumping number for L2. Consider

the string s = apbpcapbp. Thus, w1 = apbp = w2 so the string s in L2. By the pumping lemma, the string s can be
written as s = uvxyz with |vxy| ≤ p and |vy| > 0, and uvixyiz ∈ L1 for all i ≥ 0. We call each of the substrings
of the form ap or bp a “block” of s.

Case 1. v and y are on the same side of c in the string s, and neither contains c. Then, since |vy| > 0, in the
string s2 = uv2xy2z, the length of the substring on the left side of c would be different from that of the substring
on the right side of c, which is not a string in L2. Contradiction.

Case 2. either v or y contains c. By the definition of the language L2, k ≥ 2. So a string in L2 contains at
least one c. However, the string s0 = uv0xy0z contains no c so it cannot be in the language L2. Contradiction.

Case 3. Excluding Cases 1-2, we must have v on the left side of c and y on the right side of c, and neither
contains c. Because |vxy| ≤ p, v is a substring of b’s and y is a substring of a’s. Thus, in the string s2 = uv2xy2z
(note that c is contained in x), since |vy| > 0, either (in case |v| > 0) the number of b’s before c is larger than
the number of b’s after c, or (in case |y| > 0) the number of a’s before c is smaller than the number of a’s after c.
Thus, s2 cannot be in L3. Contradiction.

In summary, in all possible cases, we would derive a contradiction. As a result, our assumption that the
language L2 is context-free cannot be true. This proves that the language L2 is not context-free.

(c) the language L3 of all strings over {a, b, c, d} such that the number of a’s equals the number of b’s and the
number of c’s equals the number of d’s. Note that there is no restriction on the order in which the symbols occur.

Assume the contrary that the language L3 is context-free, and let p be the pumping number for L3. Consider
the string s = apcpbpdp in the language L3. By the pumping lemma, the string s can be written as s = uvxyz
with |vxy| ≤ p and |vy| > 0, and uvixyiz ∈ L1 for all i ≥ 0. We call each of the substrings of the form ap, bp,
cp, dp a “block” of s.

Since the blocks ap and bp are separated by the block cp of length p, and since |vxy| ≤ p, if vy contains a’s,
then vxy, thus vy, cannot contain b’s, and if vy contains b’s, then vxy, thus vy, cannot contain a’s. In both cases,
since |vy| > 0, the number of a’s and the number of b’s in the string s0 = uv0xy0z cannot be the equal. This gives
a contradiction that the string s0 is not in the language L3.

Using exactly the same way, the cases where either vy contains c’s or vy contains d’s would lead to the
contradiction that the string s0 is not in the language L3.

Since |vy| > 0, vy must contain at least one of the symbols a, b, c, and d, which will always lead to a
contradiction as shown above. As a result, our assumption that the language L3 is context-free cannot be true. This
proves that the language L3 is not context-free.

5

