
CSCE-433 Formal Languages & Automata
CSCE-627 Theory of Computability

Spring 2022

Instructor: Dr. Jianer Chen Senior Grader: Avdhi Shah
Office: PETR 428 Office: N/A
Phone: 845-4259 Phone: tba
Email: chen@cse.tamu.edu Email: avdhi.shah@tamu.edu
Office Hours: MWF 10:30–11:30am Office Hours: tba

Solutions to Assignment #3

1. Use the pumping lemma for regular languages to show that the following languages are not regular
(you might find it useful to study the solutions in the textbook to Exercise 1.29, parts (a) and (c)):

a) {www|w ∈ {a, b}∗}
b) {ai(ab)j(ca)2i|i > 0, j > 0}
c) the set of properly nested parentheses (e.g., includes “()(())()” but not “)(“)
d) (CSCE 433 students only) {anbm|n < m}
e) (CSCE 627 students only) {aibjc2j |i ≥ 0, j ≥ 0}

Proof. In the proofs for all cases, we will assume that p is the pumping length given in Pumping Lemma,
for which you can use either the version given in the textbook, or the version we presented in class.

a) Name the language by L1. Consider the string x = apbapbapb in L1 (thus, w = apb). Assum the
contrary that L1 is regular. Then by Pumping Lemma, we can pump on the prefix ap of x. Thus, this ap

can be written as ap = aiakaj , where i+ k + j = p and k > 0 such that the string

xr = ai(ak)rajbapbapb = aiarkajbapbapb

is in the language L1 for all r ≥ 0. However, if we let r = 2p+ 2 (note k > 0), then the first half of the
string x2p+2 = aia2pk+2kajbapbapb is a sequence of all a’s, while its second half contains b’s. Thus, the
string x2p+2 = aia2pk+2kajbapbapb cannot be of the pattern www for any w ∈ {a, b}∗, so cannot be in
the language L1. This contradiction shows that the language L1 is not regular.

b) Name the language by L2. Consider the string x = ap(ab)(ca)2p in L2. Assum the contrary that
L2 is regular. Then by Pumping Lemma, we can pump on the prefix ap of x. Thus, this ap can be written
as ap = aiakaj , where i+ k + j = p and k > 0 such that the string

xr = ai(ak)raj(ab)(ca)2p = aiarkaj(ab)(ca)2p

is in the language L2 for all r ≥ 0. However, if we let r = 2p (note k > 0), then there are at least
2pk + i + j ≥ 2p copies of a’s that appear before the first appearance of (ab), while there are only 2p,
which is strictly less than 2(2p) = 4p, copies of (ca)’s that appear at the end of the string. Thus, the
string x2p = aia2pkaj(ab)(ca)2p cannot be of the pattern ai(ab)j(ca)2i for any i > 0 and j > 0, so
cannot be in the language L2. This contradiction shows that the language L2 is not regular.

1

c) Name the language by L3. The proof for this language is simpler. Consider the string x = (p)p

in L3 (i.e., x starts with p copies of the left parenthesis “(”, which are followed by p copies of the right
parenthesis “)”). Assum the contrary that L3 is regular. Then by Pumping Lemma, we can pump on the
prefix (p of x. Thus, this (p can be written as (p= (i(k(j , where i + k + j = p and k > 0 such that the
string

xr = (i(rk(j)p

is in the language L3 for all r ≥ 0. However, if we let r = 0 (note k > 0), then the string is x0 = (p−k)p.
Since k > 0, the parentheses are not balanced in x0, so the string x0 is not in the language L3. This
contradiction shows that the language L3 is not regular.

d) Name the language by L4. Consider the string x = apbp+1 in L4. Assum the contrary that L4 is
regular. Then by Pumping Lemma, we can pump on the prefix ap of x. Thus, this ap can be written as
ap = aiakaj , where i+ k + j = p and k > 0 such that the string

xr = aiarkajbp+1

is in the language L4 for all r ≥ 0. However, if we let r = 2, since k > 0, we have i + 2k + j =
i + k + j + k = p + k ≥ p + 1. Thus, the string is x2 = aia2kajbp+1 is not in the language L4. This
contradiction shows that the language L4 is not regular.

e) Name the language by L5. Consider the string x = bpc2p in L5 (thus, we let i = 0 and j = p).
Assum the contrary that L5 is regular. Then by Pumping Lemma, we can pump on the prefix bp of x.
Thus, this bp can be written as bp = bibkbj , where i+ k + j = p and k > 0 such that the string

xr = bibrkbjc2p

is in the language L5 for all r ≥ 0. However, if we let r = 0, since k > 0, we have i+ j = p− k < p.
Thus, the string x0 = bibjc2p contains (strictly) fewer than p copies of b but 2p copies of c. Thus, x0 is
not in the language L5. This contradiction shows that the language L5 is not regular.

2. [Textbook, page 90, Exercise 1.46 (a) and (c)] Prove that the following languages are not regular. You
may use the pumping lemma and the closure of the class of regular languages under union, intersection,
and complement.

(a) {0n1m0n | m,n ≥ 0}
(c) {w | w ∈ {0, 1}∗ is not a palindrome}

Proof. Again in the proofs below, we will assume that p is the pumping length given in Pumping Lemma,
for which you can use either the version given in the textbook, or the version we presented in class.

(a) Name the language by La. Consider the string x = 0p10p in La (thus, we have n = p and
m = 1). Assum the contrary that La is regular. Then by Pumping Lemma, we can pump on the prefix
0p of x. Thus, this 0p can be written as 0p = 0i0k0j , where i+ k + j = p and k > 0 such that the string

xr = 0i0rk0j10p

is in the language La for all r ≥ 0. However, if we let r = 0, since k > 0, we have i+ j = p− k < p.
Thus, the string x0 = 0i+j10p satisfies i + j < p, and is not in the language La. This contradiction
shows that the language La is not regular.

2

(c) Name the language by Lc. Assum the contrary that Lc is regular. Since the class of regular
languages is closed under complement, the complement Lc of Lc should be also regular.

The complement Lc of Lc is defined as:

Lc = {w | w ∈ {0, 1}∗ is a palindrome}.

We apply Pumping Lemma on the language Lc. Recall that a string is a palindrome if it reads the same
forward and backward. Since Lc is regular, we can assume that p is the pumping length for the regular
language Lc.

Consider the string x = 0p10p, which is obviously a palindrome, thus is in the language Lc. By
Pumping Lemma, we can pump on the prefix 0p of x. Thus, this 0p can be written as 0p = 0i0k0j , where
i+ k + j = p and k > 0 such that the string

xr = 0i0rk0j10p

is in the language Lc for all r ≥ 0. However, if we let r = 0, since k > 0, we have i + j = p− k < p.
Thus, the string x0 = 0i+j10p is not a palindrome, thus, is not in the language Lc. This contradiction
shows that the language Lc is not regular. As a consequence, the language Lc is not a regular language
as well.

3. Write a context-free grammar for each of these languages; include a brief English intuition for how it
works.

(a) {ambian|i = m+ n,m ≥ 0, n ≥ 0}
(b) set of all strings over {a, b} that have the same number of a’s as b’s; includes ε
(c) the complement of {anbn|n ≥ 0}, where Σ = {a, b}

Solution.
(a) Rewrite the language as {ambmbnan | m ≥ 0, n ≥ 0}. Each string is the contatenation of

ambm and bnan for some values of m ≥ 0 and n ≥ 0. We can use concatenation in the production rules
expanding the start variable S, and then separately use A and B to generate the two parts of the string:

S → AB

A → aAb | ε
B → bBa | ε

(b) We consider three cases: a as the beginning of a substring and b is at the end of the substring
with any (legal) string in between), or vice versa, or we have two legal strings side by side.

S → aSb | bSa | SS | ε

(c) Categorize strings in this language into three groups: (1) those in which there is a b that precedes
an a; (2) those in which all a’s precede all b’s but the number of a’s is larger than the number of b’s; and
(3) those in which all a’s precede all b’s but the number of a’s is smaller than the number of b’s. We
will have three “subgrammars”, one for each group. The first group is created by variables S1 and U ,
where U generates any string over {a, b}. Variables S2 and S3 are used to create strings in the second
and third groups, respectively. Both of them use variable E, which creates strings of the form anbn. For

3

the second group, the anbn format strings are preceded by additional a’s, created using variable A. For
the third group, the anbn format strings are followed by additional b’s, created using variable B.

S → S1 | S2 | S3
S1 → UbUaU

U → aU | bU | ε
S2 → AE

A → a | aA
E → aEb | ε
S3 → EB

B → b | bB

4. [Textbook, page 155, Exercise 2.9] Give a context-free grammar that generates the language

A = {aibjck | i = j or j = k where i, j, k ≥ 0}.

Is your grammar ambiguous? Why or why not?

Solution. The idea is to use nondeterminism in the first grammar rule from the start variable S to decide
whether to have the number of a’s equal the number of b’s, or to have the number of b’s equal the number
of c’s. Then we have separate “subgrammars” for those two cases. For generating strings with equal
numbers of a’s and b’s, we use the variables S1, T1 and C, and use concatenation to append any number
of c’s at the end. An analogous idea is used for the other case.

S → S1 | S2
S1 → T1C

T1 → aT1b | ε
C → cC | ε
S2 → AT2

T2 → bT2c | ε
A → aA | ε

The grammar is ambiguous. For example, the string abc can be derived by the grammar in two different
ways (i.e., has two different parse trees):

S

S1

T1 C
�� QQ

a T1 b

 JJ

c C
�� AA

ε ε

S

S2

A T2
�� QQ

a A
�� AA

b T2 c

 JJ

ε ε

4

5. [Textbook, page 156, Exercise 2.14] Convert the following CFG into an equivalent CFG in Chomsky
normal form, using the procedure given in Theorem 2.9. Be sure to show all your steps.

A → BAB | B | ε
B → 00 | ε

Solution. The procedure proceeds as follows.

Step 1: Add a new start variableS, and its associated rule.

S → A

A → BAB | B | ε
B → 00 | ε

Step 2: Remove ε rules. First, remove A→ ε and get:

S → A | ε
A → BAB | B | BB
B → 00 | ε

Next, remove B → ε and get:

S → A | ε
A → BAB | B | BB | AB | BA | A
B → 00

Step 3: Remove unit rules. First, remove A→ A and get:

S → A | ε
A → BAB | B | BB | AB | BA
B → 00

Then remove S → A and get:

S → BAB | B | BB | AB | BA | ε
A → BAB | B | BB | AB | BA
B → 00

Then remove S → B and get:

S → BAB | 00 | BB | AB | BA | ε
A → BAB | B | BB | AB | BA
B → 00

Then remove A→ B and get:

S → BAB | 00 | BB | AB | BA | ε
A → BAB | 00 | BB | AB | BA
B → 00

5

Step 4: Reduce all right-hand sides to two symbols. There is only one problematic such right-hand side:
BAB, and we introduce a new variable C to take care of that:

S → BC | 00 | BB | AB | BA | ε
C → AB

A → BC | 00 | BB | AB | BA
B → 00

Step 5: Replace terminals on right-hand sides that are not singletons with variables. There is only one to
worry about: 0, and we introduce a new variable U to take care of that:

S → BC | UU | BB | AB | BA | ε
U → 0

C → AB

A → BC | UU | BB | AB | BA
B → UU

Now the grammar is in Chomsky normal form.

6

