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Solutions to Assignment #1

1. Prove by induction: 12 + 32 + 52 + · · ·+ (2n− 1)2 = (4n3 − n)/3.

Proof. For n = 1, LHS = 12 = 1, and RHS = (4 · 13 − 1)/3 = 1. The equality holds true.
Inductively, assume that the equality holds true for all postive integers n not larger than k,

where k ≥ 1.
Now consider n = k + 1. We have

LHS for n = k + 1 = 12 + 32 + 52 + · · ·+ (2n− 1)2

= 12 + 32 + 52 + · · ·+ (2(k + 1)− 1)2

= 12 + 32 + 52 + · · ·+ (2k − 1)2 + (2(k + 1)− 1)2

= (4k3 − k)/3 + (2(k + 1)− 1)2

= (4k3 − k)/3 + (2k + 1)2

= (4k3 − k)/3 + 4k2 + 4k + 1

= (4k3 − k + 12k2 + 12k + 3)/3

= (4(k3 + 3k2 + 3k + 1)− (k + 1))/3

= (4(k + 1)3 − (k + 1))/3

= RHS for n = k + 1,

where the fourth equality has used the inductive hypothesis. The above derivation shows that
the equality given in the problem also holds true for n = k + 1, which completes the inductiive
proof of the equality.

2. Prove by induction: for every integer n ≥ 0, 52n+1 + 22n+1 is divisible by 7.

Proof. For n = 0, LHS = 52·0+1 + 22·0+1 = 7, the statement holds true.
Inductively, assume the statement holds true for all integers n ≥ 0 that are not larger than

k, where k ≥ 0.
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Now consider n = k + 1. We have

52n+1 + 22n+1

= 52(k+1)+1 + 22(k+1)+1

= 5(2k+1)+2 + 2(2k+1)+2

= 25 · 5(2k+1) + 4 · 2(2k+1)

= 21 · 5(2k+1) + 4(5(2k+1) + 2(2k+1)). (1)

By the inductive hypothesis, 5(2k+1)+2(2k+1) is divisible by 7. Thus, the second term in (1), i.e.,
4(5(2k+1) + 2(2k+1)), is divisible by 7. Moreover, the first term 21 · 5(2k+1) in (1) is also divisible
by 7 because of the factor 21. As a result, the value in (1), which is equal to 52(k+1)+1+22(k+1)+1

is divisible by 7. This shows that the statement also holds true for n = k + 1, which completes
the inductive proof of the statement.

3. Prove by contradiction: for any integers a, b, c, if a2 + b2 = c2, then at least one of a and b
is an even number;

Proof. Assume the contrary that both a and b are odd numbes, and that a2 + b2 = c2 for an
integer c. Then we can write a = 2n + 1 and b = 2m + 1, where both n and m are integers.
Bringing this to a2 + b2 = c2, we get

(2n + 1)2 + (2m + 1)2 = 4n2 + 4n + 1 + 4m2 + 4m + 1 = 4(n2 + n + m2 + m) + 2 = c2.

Since 4(n2 +n+m2 +m)+2 is an even number, c2, thus c, must be an even number. Let c = 2p,
where p is an integer, then we have c2 = 4p2. So from 4(n2 + n + m2 + m) + 2 = c2, we get

2 = 4p2 − 4(n2 + n + m2 + m) = 4(p2 − n2 − n−m2 −m).

Since all p, n, and m are integers, the above equality shows that the integer 2 is divisible by 4,
which is impossible. This contradiction shows that at least one of a and b is an even number.

4. Prove by contradiction:
(a) For any integer n, if n2 is divisible by 6, then n is also divisible by 6;
(b)
√

6 is an irrational number.
Both (a) and (b) should be proved by contradiction.

Proof. (a) Assume that n2 is divisible by 6 but n is not divisible by 6. Then n can be written
as n = 6m + p, where both m and p are integers, and 1 ≤ p ≤ 5.

We have n2 = 36m2 + 12mp + p2. By the assumption, n2 is divisible by 6. Since both 36
and 12 are divisible by 6, we must have p2 divisible by 6. However, since p is one of 1, 2, 3, 4,
and 5, whose square p2 can be only one of 1, 4, 9, 16, and 25, of which none is divisible by 6.
This derives a contradiction, and the contradiction proves statement (a).

(a) Assume the contrary that
√

6 is a rational number n/m, where n and m are integers
with no common factor other than 1. Then (n/m)2 = (

√
6)2 = 6, which gives n2 = 6m2, so

n2 is divisible by 6. By statement (a), n is also divisible by 6, so can be written as n = 6p for
an integer p. This plus n2 = 6m2 gives 6p2 = m2, which shows that m2 is divisible by 6. By
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statement (a) again, we derive that m is also divisible by 6. However, this would lead to the
conclusion that 6 is a common factor of n and m, contradicting the assumption that n and m
have no common factor other than 1. This contradiction proves statement (b).

5. [CSCE-433 Students only] Suppose that n straight lines are drawn in the plane such that
no two lines are parallel and no three lines go through the same point. These lines divide the
plane into rn regions. Prove: rn = 1 + n(n + 1)/2.

Proof. We prove the statement by induction on n. For n = 0, i.e., if we draw no line in the plane,
then there is only 1 region in the plane, which is the entire plane. Thus, r0 = 1 = 1+0(0+1)/2.
The statement holds true for n = 0.

Assuem inductively that the statement holds true for all n ≤ k, where k ≥ 0.
Now we prove the statement for n = k + 1. Let the k + 1 lines be {l1, l2, · · · , lk, lk+1}. First

consider the drawing of the first k lines Lk = {l1, l2, · · · , lk} in the plane. These k lines divide
the plane into rk regions. Let the set of these rk regions be Rk. Since the line lk+1 is not in
parallel with any line in Lk, neither hits a point that is an intersection point of two lines in Lk,
lk+1 intersects the k lines in Lk at exactly k points, each for a line in Lk. Now image that we
traverse on the line lk+1, starting from the infinity ∞. The semi-line of lk+1 from ∞ to the first
intersection point of lk+1 and Lk divides a region in Rk into 2 regions. After that, each segment
on lk+1 between two consecutive intersection points of lk+1 and Lk divides a region in Rk into
2 regions, and finally, the semi-line on lk+1 from the last intersection point of lk+1 and Lk to
∞ divides a region in Rk into 2 regions. Since that are exactly n such intersection points of
lk+1 and Lk, adding the line lk+1 to the drawing of Lk = {l1, l2, · · · , lk} increases the number of
regions by k+1. Therefore, rk+1 = rk+(k+1). By the inductive hypothesis, rk = 1+k(k+1)/2.
Thus,

rk+1 = rk + (k + 1) = 1 + k(k + 1)/2 + (k + 1) = 1 + (k + 1)((k + 1) + 1)/2.

This proves that the statement also holds true for the case n = k + 1, thus completing the
inductive proof.

6. [CSCE-627 Students only] Prove that every simple graph (i.e., a graph with no self-loop
and multiple edges) with two or more vertices contains two vertices that have equal degrees.

Proof. This proof uses both proof by induction and proof by contradiction. We prove the
statement by induction on the number n of vertices in the graph G, where n ≥ 2.

For a graph G2 of n = 2 vertices v1 and v2, either there is no edge in G2 so that both vertices
v1 and v2 have degree 0, or there is a single edge between v1 and v2 so that both v1 and v2 have
degree 1. In both cases, the statement holds true.

Inductively, assume that the statement holds true for graphs of n vertices for all n ≤ k,
where k ≥ 2.

Now consider a graph Gk+1 of k + 1 vertices. Here we use proof by contradiction to show
that Gk+1 has two vertices of equal degrees. Suppose to the contrary that there are no two
vertices in Gk+1 that have equal degrees. Thus, there are k+ 1 different vertex degrees in Gk+1.
Since each vertex in Gk+1 can be incident to at most k edges, the vertex degrees in Gk+1 must
be integers between 0 and k. Thus, the different k + 1 vertex degrees in Gk+1 must be exactly
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the k + 1 integers 0, 1, 2, . . ., k. This implies that there is a vertex vk+1 of degree 0. Now if
we remove the vertex vk+1 from the graph Gk+1, we get a graph Gk of k vertices. Since the
vertex vk+1 has degree 0, every vertex in Gk and its corresponding vertex in Gk+1 have the same
degree. However, by the inductive hypothesis, there are two vertices vs and vt in the graph
Gk that have equal degrees. But this would imply that the two vertices vs and vt in Gk+1 also
have equal degrees, contradicting the assumption that all vertices in Gk+1 have different degrees.
This contradiction shows that there must be two vertices in Gk+1 that have equal degrees.

Now we get back to the proof by induction. The above discussion proves that the graph
Gk+1 of k + 1 vertices has two vertices of equal degrees. Thus, the statement also holds true for
n = k + 1, which completes the inductive proof.

As a result, we have proved that the statement holds true for all n ≥ 2.
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