
How to Make A Proof of Halting Problem More

Convincing: A Pedagogical Remark

Benjamin W. Robertson1, Vladik Kreinovich1, and Olga Kosheleva2

Departments of 1Computer Science and 2Teacher Education
University of Texas at El Paso

500 W. UNiversity, El Paso, TX 79968, USA
bwrobertson@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract

As an example of an algorithmically undecidable problem, most text-
books list the impossibility to check whether a given program halts on
given data. A usual proof of this result is based on the assumption that
the hypothetical halt-checker works for all programs. To show that a
halt-checker is impossible, we design an auxiliary program for which the
existence of such a halt-checker leads to a contradiction. However, this
auxiliary program is usually very artificial. So, a natural question arises:
what if we only require that the halt-checker work for reasonable pro-
grams? In this paper, we show that even with such a restriction, halt-
checkers are not possible – and thus, we make a proof of halting problem
more convincing for students.

1 Formulation of the Problem

Halting problem: reminder. A computer science degree means acquiring
both the practical skills needed to design and program software and the theo-
retical knowledge describing which computational tasks are possible and which
are not. Different programs include different examples of problems for which no
computational solution is possible, but all of them include – with proof – the
very first example of such a problem: the halting problem, according to which
no algorithm is possible that, given a program p and data d, always checks
whether p halts on d; see, e.g., [2].

Some textbooks describe this result in terms of Turing machines but, in our
opinion, this result is much clearer to students when it is described in terms
of programs – i.e., something with which are very familiar – rather than in
terms of Turing machines, a new concept that they have just learned in the
corresponding theoretical course and with which they are not yet very familiar.

Let us therefore concentrate on the formulation of this result in terms of
programs.

1



How this result is usually proved. To come up with a proof, we first need
to describe both the program and the data in terms of natural numbers. This
description is almost straightforward. Indeed, in the computer, no matter what
symbols we type, any program or data is represented as a sequence of 0s and
1s.

In principle, we can just take the corresponding sequence of 0s and 1s, and
interpret it as a binary number: e.g., 100 would be interpreted as 4, 101 as 5,
etc. However, this does not provide us with a perfect representation, since in
this case, two different sequences of 0s and 1s, e.g., 1 and 001, are represented
by the same natural number – and so, based on this number, it is impossible to
uniquely reconstruct the corresponding program. To avoid this non-uniqueness,
we can append 1 in front the sequence of 0s and 1s. This way, 1 becomes 11
which is the number 3, while 0011 becomes 1001 which is a different natural
number 9.

Once this representation is agreed upon, we can then prove, by contradiction,
that the desired halt-checker h(p, d) is not possible. Indeed, if it was possible,
then we could write the following auxiliary program:

procedure auxiliary(i):

if h(i,i) then

loop forever

else

return 0

where loop forever means invoking a non-halting while-loop, such as

while(true}) i = i;

The proof is straightforward. Indeed, our auxiliary program corresponds to
some integer i0.

• If this program halts on the number i0, then h(i0, i0) is true and hence,
our auxiliary program loops forever – which contradicts to our assumption
that it halts.

• Similarly, if the auxiliary program does not halt, this means that h(i0, i0)
is false and thus, our auxiliary program returns 0 – which contradicts to
our assumption that it does not halt.

In both possible cases, we get a contradiction, which means that our assumption
– that a halting program h(p, d) is possible – is wrong. Thus, no such halting
program is possible.

A natural question. What this proof shows that if we require that a program
h(p, d) correctly checks halting for all possible programs p and data d. To prove
this, we consider a weird example of an auxiliary program – a program which was
invented for the sole purpose of proving this result. What if we limit ourselves
to program which are more reasonable (in some natural sense)? Will this result
still hold?

2



This question makes perfect sense in view of the analogy with barber’s
paradox and Russell’s paradox in set theory. Most textbooks emphasize
that the main idea behind the above proof comes from the origins of set theory.
The corresponding construction can be informally described by the known bar-
ber’s paradox, when a military barber attached to a detachment is commanded
to shave those and only those who do not shave themselves. This is clearly a
paradox:

• if he shaves himself, then he is not allowed to do it, and

• vice versa, if he does not shave himself, then he is commanded to shave
himself.

In set theory context, this paradox was first described by the famous philoso-

pher Bertrand Russell who proposed to consider the set S
def
= {x : x ̸∈ x} of

all the sets that are not elements of themselves (being an element of oneself is
not an impossibility: e.g., the set of all possible sets is clearly its own element).
Here:

• If S ∈ S, then, since S is an element of the class of all sets that do not
belong to themselves, we should have S ̸∈ S.

• Vice versa, if S is not an element of S, then it should not have the property
S ̸∈ S and thus, we would have S ∈ S.

In both cases, we have a contradiction.
This situation is indeed similar to the halting problem. However, in contrast

to the halting problem, for sets, we do not make a radical conclusion that sets
do not exist: it turns out that if we limit ourselves to reasonable sets, paradoxes
disappear, and we have a very reasonable theory – actually, set theory is, at
present, the foundation for all mathematics.

So, this analogy emphasizes the above natural question: what if we limit
ourselves to reasonable programs – like in set theory, when we limit ourselves
to reasonable sets — will we get a different result?

What we do in this paper. In this paper, we explain that – as is rather easy
to explain in class – the halt-checking program h(p, d) is not possible even if we
require that it only work for reasonable programs.

2 Halt-Checking Is Impossible Even If We Limit
Ourselves to Reasonable Programs

Main idea. The main idea behind our explanation is based on another algorith-
mically unsolvable problem which is often presented in theoretical computing
classes – the problem of checking whether a given Diophantine equation is solv-
able.

A Diophantine equation is a equation of the type P (x1, . . . , xn) = 0, where
P (x1, . . . , xn) is a polynomial with integer coefficients, and we are looking for

3



solutions in which all xi are natural numbers. It is known that no algorithm is
possible that would check whether a given Diophantine equation has a solution.
This result is a solution to one of the 23 challenging mathematical problems that
David Hilbert, on behalf of the world’s mathematical community, presented to
the 20 century mathematicians – this problem (No. 10 on Hilbert’s list) was
eventually solved by Yuri Matiyasevich in 1970; see, e.g., [1].

How to transform this result into a more convincing proof of the
halting problem. For each polynomial P , we can use exhaustive search to see
if the corresponding polynomial equation has a solution in natural numbers:

• we start with Stage 0, on which we check whether P (x1, . . . , xn) = 0 for

any tuple for which
n∑

i=1

xi = 0 – there is actually only one such tuples

x1 = . . . = xn = 0, so this checking is easy;

• then, we perform Stage 1, i.e., we check whether P (x1, . . . , xn) = 0 for

any tuple for which
n∑

i=1

xi = 1 – there are n such tuples, with xi = 1 for

some i and xj = 0 for all j ̸= i;

• after that, we perform Stage 2, i.e., we check whether P (x1, . . . , xn) = 0

for any tuple for which
n∑

i=1

xi = 2;

• . . .

• at Stage k of this algorithm, we check whether P (x1, . . . , xn) = 0 for any

tuple for which
n∑

i=1

xi = k;

• . . .

At each stage, we check finitely many tuples.
If the polynomial equation has a solution, this algorithm will find it. Thus,

this program is reasonable (definitely more reasonable than the program used
in the usual proof of halting problem).

On the other hand, if the original equation does not have a solution, then
this program will never halt. So, if it was possible to check whether any such
program halts or not, we would then be able to tell whether a given Diophantine
equation has a solution – and we know, from Matiyasevich’s result, that this is
not possible.

Thus, even if we limit ourselves to reasonable programs p, it is still not
possible to have a program that would check, for each such program p and data
d, whether p halts on d.

Comment. Of course, the impossibility of such a general result does not preclude
us from sometimes being able to check whether a program halts: such checks
are indeed possible for many specific classes of programs.

4



Acknowledgments

This work was supported in part by the National Science Foundation grant
HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing, MIT
Press, Cambridge, Massachusetts, 1993.

[2] M. Sipser, Introduction to the Theory of Computation, Cengage Learning,
Boston, Massachusetts, 2012.

5


