
Discrete Applied Mathematics 25 (1989) 19-26
North-Holland

19

A NEW COMPLETE LANGUAGE FOR DSPACE(Iogn)*

Jian-er CHEN
Department of Mathematics, Columbia University, New York, NY lOll.27, UsA

Received 9 January 1989

An important open problem relating sequential and parallel computations is whether the space
complexity on Turing machines is linearly related to the depth complexity on uniform circuits.
Some graph problems have been successfully proved to be complete for ns.PAca(logn) under
(log @-depth Turing reducibility [3]. In this paper, we discuss (log &depth many-one reducibility
which is proved to be weaker than (logn)-depth Turing reducibility. A new complete language
for nsPAcn(log n) under our reducibility is presented.

1. Introduction and definitioF

An important open problem which relates sequential and parallel computations
is to determine if the space complexity on Turing machines is linearly related to the
depth complexity on uniform circuits. The best result known is by Borodin [l]:

DEPTH@(R)) C DSPACE(S(II)) C DEPTH((g(n))2).

Any improvement to this is a breakthrough. One approach is to find a “hardest”
problem in DSPACE(S(II)) and see if it can be accepted by a uniform circuit family
of subquadratic depth. Some attempts have been made and some graph problems
have been successfully proved to be complete for DsPAcn(log n) under (log @-depth
Turing reducibility (will be defined later) [3]. In this paper, we discuss (log @-depth
many-one reducibility which is proved to be weaker than the logn-depth Turing
reducibility. We present a new problem which is complete for DsPAcE(logn) under
our reducibility.

Some basic definitions are given below.
A (Boolean) circuit C with n inputs and m outputs is a finite directed acyclic graph

with nodes (called gates) labelled as follows. The circuit C has n “input gates” with
indegree zero labelled x1, . . . , x,, respectively. All other gates of indegree zero are
labelled either 0 or 1. All gates of indegree one are labelled 1. All other gates have
indegree two and are labelled either V or A. Exactly m gates are labelled output gates
and have labels yl, . . . , ym, respectively. The size of C is the number of gates of C,
and the depth of C is the len.gth of the longest path from some input to some output.
The circuit C computes a function f : (0, 1 } ” --, (0, 1) m in the obvious way.

* This work is supported in part by NSF grants DCR-84-01898 and DCR-84-01633.

0166-218X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)

20 J. Chen

A circuit family with input size g(n) and output size h(n) is a sequence {C, 1 n 2 1)
of circuits, where C, is a circuit with g(n) inputs and h(n) outputs. Letf= {f, I nl 1)

be a sequence of Boolean functions, where f, : (0, l} g(n) + (0, 1 jh@). We say that
the circuit family (C, 1 nr l} computes f iff C, computes f, for all n. A circuit
family a can also be used to accept a set SE (0, 1 } * if a computes the characteristic
function of S.

A circuit family a = {C, 1 n 1 1 } is uniform if the transformation 1’ + C,, (where
C,, is an encoding of the circuit C,) can be performed in O(log n) space on a deter-
ministic Turing machine.

A circuit family a = {C, 1 n ~1) is in DEPTH(~(~)) if a is uniform and there is a
constant c such that for all n the circuit C,, has depth at most c- d(n). Note that by
the uniformity condition, if a= {C, I nl 1) is in DEPTH(d(n)), then there is a
polynomial p such that the size of C, is bounded by p(n) for all n.

We also say that a functionf : (0,l) * + (0, l> * is in DEPTH@/(n)) if f is computed
by a circuit family a in DEPTH@(n)), and a language L is in DEPTH(d(n)) if L iS ac-
cepted by a circuit family a in DEPTH@(K)). The context will always make our mean-
ing clear.

2. Logarithmic depth reducibilities

In this section, we will discuss two different kinds of (log n)-depth reducibilities:
The (log n)-depth Turing reducibility and the (log n)-depth many-one reducibility.

To define the (logn)-depth Turing reducibility, we need the notion of an oracle
gate. An oracle gate in a circuit is a k inputs, one output gate which, on an input
x of length k, will produce the value 1 on its output edge iff x is in the specified
oracle set. The contribution of this node to the depth of the path on which it lies
in the circuit is [log kl . An oracle circuit CA relative to an oracle set A E (0, l} * is
a circuit whose gates can be oracle gates computing the characteristic function of
the oracle set A (more precisely, if g is an oracle gate with k inputs in CA, then g
computes the characteristic function of (0, 1 lk (7 A). An oracle circuit family
aA = {C,” I n L l} relative to A is then a sequence of circuits such that Ct is an
oracle circuit relative to A for all n 2 1.

Given the discussion above, it now makes sense to define uniform oracle circuit
families, and to define the relative class DEPTHA(d(n)) (for full discussion, the
reader is referred to [2, lo]).

Definition 2.1. A language L is log n-depth Turing reducible to a language A (writ-
ten L I $!?A) if and only if there is a uniform oracle circuit family aA = {Ct I n 1 l}
in DEPTHA(logn) which accepts L.

We are more interested in the following “weaker” reducibility.

A new complete language for DSPACE(~O~ n) 21

Definition 2.2. A language A is (log@-depth many-one reducible to a language B
if and only if there is a function f : {O,l} * + (0,l) * which can be computed by a
circuit family {C, 1 nl l> in DEPTH(log n), such that for all XE (0,l) *, XE A if and
only if f (x) E B. We will write this relation as A I LtB.

The following theorem shows that the (log@-depth many-one reducibility is
“weaker” than the logn-depth Turing reducibility in a natural sense.

Definition 2.3. Let sA and sB be two reducibilities. (A is strict/y stronger than
(B if

(1) for any pair of languages LI and I$;, LI sB La implies L1 IA Lz;
(2) there is a pair of languages S, and S2 such that S, =A S, holds but S, sB S,

does not hold.

Theorem 2.4. The reducibility I SD is strictly stronger than the reducibility 5 “,“.

Proof. Ladner, Lynch and Selman [7] have given a language L E DEXPTIME which
is not reducible to its complement co-L under the Karp reducibility. Thus this
language is not reducible to its complement co-L under the reducibility 5: since
the circuit families in DEPTH(logn) are of polynomial size (see [4]). However, the
language L is obviously reducible to its complement co-L under the I y reducibili-
ty. q

3. A complete language for DSPACE(lOg n) under I y

Definition 3.1. Let 5 be a reducibility. A language L is r-hard I%li the c!asr C if
and only if SI L for all S in C. Further, L is I -complete for C if and only if L
is I -hard for C and L E C.

Recently, some graph problems have been successfully proved to be I y-corn-
plete for DsPAcE(log n) [3] (a closer examination reveals that these problems are also
5 L,D-complete for DsPAcE(log n)). Here we present a new 5 Lz-complete language
for DSPACE(lOgn).

A k-head finite automaton is a Turing machine with only one read-only tape and
k heads on this tape. We call a k-head finite automaton one-way if all heads of it
can move only to the right but cannot move to the left (it is allowed for the heads
to make stationary moves), otherwise we call it two-way.

Define a language i-k-DFA as follows:

i-k-DFA = {x # M 1 A4 is a i-way k-head deterministic finite

automaton accepting the string x} .

22 J. Chen

We are going to prove that I-ZDFA is 5: -complete for nsPAcE(log n). Before
doing this, we first need some lemmas.

The first lemma is due to Hartmanis [5].

Lemma 3.2. If a language L is in DsPAcE(log n), then there exist an integer k and
a two-way k-head deterministic finite automaton F accepting L.

Lemma 3.3. Given a two-way k-head deterministic finite automaton MI, there ex-
ist a function f,, which can be computed by a circuit family in DEPTH(log n), and
a one-way (k+ I)-head deterministic finite automaton Mz such that for all x, M2
accepts f, (x) if and only if MI accepts x.

Proof. Given a two-way k-head deterministic finite automaton M,, without loss of
generality, we assume that the running time of M, is not greater than a. nk, where
n is the length of the input and a is a constant. Then we define

f, (x) = (x #)k+n”.

We construct a one-way (k+ I)-head deterministic finite automaton M2 such that
for all x, M2 accepts ft(x) if and only if MI accepts x.

M2 will use k of its heads to simulate the k heads of M,, respectively, and use
the extra head as a counter. More precisely, suppose that the k heads of MI are
HI, ***, Hk, then let the k -t 1 heads of Mz be Sr, . . . , Sk, Sk+, . At the beginning of
the computation of the automata, suppose all heads are placed at the left end of the
inputs. Inductively, if after step i, the head Hj of MI is pointing to the tth symbol
of the input, then the head Sj of M2 will be pointing to the tth symbol of the ith
copy of the x# in the string f, (x), i.e., the symbols being poi,ted by Hj and Sj are
the same, 1 =i~a. nk, 1 cjc k. Mz also remembers in its finite control the current
state of M,. Therefore in this configuration, Mz can determine completely what MI
will do in next step. If in next step M, moves its head Hj one square to right, then
M2 moves its corresponding head Sj n+2 squares to right; if Hj is moved one
square to left, then S’ is moved n squares to right; finally, if Hj makes a stationary
move, then Sj is moved n + B squares to right. The extra head Sk,, of Mz is used
to count these n, n + 1 and n + 2. It is easy to see that after these modifications, Mz
is in the configuration corresponding to the configuration of M, at the end of the
(i + 1)st step. M2 accepts f,(x) when it finds that Mr is in an accepting state. For
each step of M,, the heads of Mz cross at most k copies of x# . Since MI runs in
time a. nk, there are enough copies (k- a e nk copies) of x# in fi (x) for M2 to com-
plete the simulation of the whole computation of M,. It is obvious that the func-
tion fi (x) can be computed by a circuit family in DEPTH(log n) and M2 accepts fi (x)
if and only if M, accepts x. 0

Lemma 3.4. Given a one-way k-head deterministic finite automaton M?, there ex-
ist a function f2, which can be computed by a circuit family in DEPTH(logn), and

A new COmpkte hgUagt? for DSPACE(IOg n) 23

a one-way two-head deterministic finite automaton M3 such that for all x, M3 ac-
cepts f2(x) if and only if M2 accepts x.

Proof. We only prove Lemma 3.4 for the case k = 3, The proof can be easily gener-
alized for any integer k.

Given a one-way three-head deterministic finite automaton Mz. Without loss of
generality, we can assume that the running time of Mz is at most 3n. Given an in-
put x=x1 . . . x,, E (0, 1) *, the value of the function f2(x) will be a string uuu where
each segment u is a three-track string of the following form:

segment

subsegment subsubsegment

More precisely, f2(x) will be a three-track string, on the first track the track string
is (xix2 . . . xJ3’*; on the second track the track string is (x:x; . . . x,“)~“; and on the
third track the track string is (x~‘x~’ . . . x,“‘)~. Now each position in f2(x) will be a
possible tape head configuration of M*. For example, the square of fi(x) which
contains xi, Xj and xh on its first, second and third tracks, respectively, would in-
dicate that the first, second and third heads of M2 are pointing to the ith, jth and
hth symbols of the input x, respectively. Now it is easy to see how our one-way two-
,head deterministic finite automaton M3 simulates M2: M3 uses one head to
simulate the movements of the heads of M, and uses another head as a counter.
Suppose that the heads of M2 are S,, S2 and S3 and the heads of M3 are T,, Tz. At
the beginning of the computations, all heads are placed on the left end of the inputs.
Inductively, suppose that after the ith step, the heads S,, S2 and S3 of M2 are point-
ing to the iith, i2th and i3th symbols of the input x, respectively, then the head T,
of M3 will be pointing to the itth symbol of the i2th subsubsegment of the i3th sub-
segment of j2(x) (this symbol contains Xi,, Xi2 and Xi3 on its first, second and third
tracks, respectively). To simulate one step of M2, M3 works as follows: If M2
moves its head St (S2, S3) one square to the right, then M3 moves its head Tt one
square (n squares, n2 squares) to the right. The head T2 is used as a counter to
count these numbers n and n2. It is easy to check that M3 simulates M2 correctly.
Moreover, the function f2(x) can be computed by a circu-it family in
DEPTH(lOg n). 0

Now we can prove our main theorem.

Theorem 3.5. I-2-DFA is 5 ~-complete for DsPAcE(log n).

24 J. Chen

Proof. To prove that l-ZDFA is in DsPAcn(log n) is easy: Given an input x#M, the
Turing machine T first checks whether M encodes a one-way two-head deterministic
finite automaton, then simulates M on input x step by step. T only needs to store
a triple (s,pI,pz) in the simulation, where s is the current state of M and p1 and p2
are the current positions of the two heads of M, respectively. Under reasonable
assumptions, it can be seen that T runs in O(logn) space.

Let L be a language in DsPAcE(Iog n). By our Lemmas 3.2-3.4, there exist a func-
tionfs (fs =f20 f,), which can be computed by a circuit family in DEPTH(logn), and
a one-way two-head deterministic finite automaton M such that for any x, M accepts
f3(x) if and only if XE L. Thus the function f :x+ f3(x) #M is a witness to the fact
Lr L, I-ZDFA. 0

It is interesting to note that there is a fixed one-way two-head deterministic finite
automaton M whose computation is the “hardest” with respect to the correspond-
ing parallel implementation.

Theorem 3.6. There is a one-way two-head deterministic finite automaton Md such
that if the language accepted by Md is in DEPTH(log’ +“(n)) for some & 10, then

DSPACE(iOg n) c DEPTH(lOf$ +‘(n)).

Proof. Since the I-2-DFA is in DsPAcE(log n), th.ere exist a function F,, which can
be computed by a circuit family in DEPTH(logn), and a one-way two-head deter-
ministic finite automaton Md such that for any x, Md accepts F,(x) if and only if
x E 1-2-DFA. Now for a given language L in DsPAcE(log n), since l-2-DFA is 5 Lm-
complete for DsPAcE(logn), there is a function F2, which can be computed by a
circuit family in DEPTH(logn), such that for any x, XE L if and only if &(x) E
l-2-DFA. Combining the functions F, and F,, we conclude that for any x, XE L if
and only if &(F2(x)) is accepted by the one-way two-head deterministic finite
automaton Mti It is obvious that the function F= F, 0 F2 can be computed by a cir-
cuit family in DEP-rH(logn). 0

We will call the Md in Theorem 3.6 basic one-way two-head deterministic finite
automaton.

From Theorem 3.6, we can easily show a graph problem which is I~-complete
for DSPACE(lOg n).

We suppose that graphs are represented by adjacency matrices. An acyclic directed
graph is a tree if it is connected and each node of it has outdegree at most 1. A forest
is a directed graph such that all of its connected components are trees. We define
the Forest accessibility problem (FAP) as follows:

FAP = (F # nl # n2 1 in the forest F there is a directed path from

node nl to node nz}.

It is easy to prove the following lemma.

A new coI?Ipk?te k?tgU@gt? for DSPACE(lOg n) 25

Lemma 3.1. A directed graph G is a forest if and only if the following two condi-
tions hold:

(1) each node in G has outdegree at most 1;
(2) no cycles exist in G.

Theorem 3.8. FAP is 5 ~-complete for DsPAcE(log n).

Proof. To see that FAP is in DsPAcE(log n), we use the following algorithm: Given
an input F# nl # n2, we can test if F satisfies conditions (1) and (2) in Lemma 3.7
in O(log n) space: condition (1) is easy. To make sure condition (2) is satisfied
assuming (1) is satisfied, we go from each node N in F at most n + 1 steps (where
n is the number of nodes in F) and see if N can be reached again. If there is a cycle
in F, then clearly there is a node N in F from which we can reach it again in at most
n + 1 steps. When F is a forest, we go from node nl and see if we can reach node
n2, then accept or reject accordingly.

Now we prove that FAP is I $r -hard for DsPAcE(log n). Let Md be the basic one-
way two-head deterministic finite automaton and let L E DsPAcE(log n). By Theorem
3.6, there is a function F, which can be computed by a circuit fami!y in DEPTH(log n)
such that XE L if and only if F(x) is accepted by M+ Each configuration C of i&
can be represented as (q,p1,p2) where q is a state of Md, p1 and p2 are the head
positions of head 1 and head 2, respectively. Given an input F(x), the connections
of configurations of Md are fixed: There is an edge from configuration Cr to con-
figuration C2 if and only if Cr is a succeeding configuration of C2. For this fixed
input, all the configurations and the connections above form a forest FOREST since
Md is one-way and deterministic. Md accepts F(x) if and only if there is a directed
path in FOREST from the accepting configuration to the initial configuration.
Moreover, the function FI : F(x) + FOREST can be computed by a circuit family in
DEPTH(logn). This Completes our proof. q

Remark. In [3] it is independently proved that FAP is r y-complete for
DSPACE(lOg n).

4. Remarks

We have shown that the computation performed by one-way two-head finite
automata is the “hardest” computation in DsPAcE(log n) with respect to parallel im-
plementation. This fact gives us an evidence that there is an intrinsic difference be-
tween one-head finite automata and multihead finite automata, as we will discuss
in next few paragraphes.

In 1965, Rosenberg [9] claimed that for any integer kr 1, one-way (k+ I)-head
finite automata are strictly stronger than one-way k-head finite automata, i.e., for

26 J. Chen

each k, there is a language Lk which can be accepted by a one-way (k+ I)-head
finite automaton but cannot be accepted by any one-way k-head finite automata.
Rosenberg’s conjecture was finally proved by Yao and Rivest [l 11. The similar
results were also obtained for two-way finite automata by Ibarra [6]. However, our
Theorem 3.6 and Lemma 3.2 tell us that there is no intrinsic difference between two-
head finite automata and k-head finite automata for kr2 with respect to their
parallel implementations.

On the other hand, Ladner and Fischer have given a (logn)-depth parallel
implementation for one-head finite automata [S]. If we believe that
DSPAcE(logn) # DEPTH(logn), then our Theorem 3.6 shows that it takes more
parallel time to simulate two-head finite automata than to simulate one-head finite
automata.

References

[I] A.E. Borodin, On relating time and spa.ce to size and depth, SIAM .I. Comput. 6 (1977) 733-743.
[2] S.A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and Control 64 (1985)

2-22.
[3] S.A. Cook and P. McKenzie, Problems complete for deterministic logarithmic space, J. Algorithms

8(3) (1987) 385-394.
[4] M.J. Fischer and N.J. Pippenger, Relations among complexity measures, J. ACM 26(2) (1979)

361-381.
[S] J. Hartmanis, On non-determinacy in simple computing devices, Acta Inform. 1 (1972) 336-344.
[6] O.H. Ibarra, On two-way multihead automata, J. Comput. System Sci. 7 (1973) 28-36.
[7] R.E. Ladner, N.A. Lynch and A.L. Selman, A comparison of polynomial time reducibilities,

Theoret. Comput. Sci. 1 (1975) 103-123.

[S] R.E. Ladner and M.J. Fischer, Parallel prefix computation, J.ACM 27 (1980) 831-838.
[9] A.L. Rosenberg, On multihead finite automata, IBM J. Res. Develop. 10 (1966) 388-394.

[IO] C.B. Wilson, Parallel computation and the NC hierarchy relativized, in: Proceedings First Structure

in Complexity Theory Conference (1986) 362-382.
[ll] A.C. Yao and R.L. Rivest, k+ 1 heads are better than k, J. ACM 25 (1978) 337-340.

