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An important open problem relating sequential and parallel computations is whether the space 
complexity on Turing machines is linearly related to the depth complexity on uniform circuits. 
Some graph problems have been successfully proved to be complete for ns.PAca(logn) under 
(log @-depth Turing reducibility [3]. In this paper, we discuss (log &depth many-one reducibility 
which is proved to be weaker than (logn)-depth Turing reducibility. A new complete language 
for nsPAcn(log n) under our reducibility is presented. 

1. Introduction and definitioF 

An important open problem which relates sequential and parallel computations 
is to determine if the space complexity on Turing machines is linearly related to the 
depth complexity on uniform circuits. The best result known is by Borodin [l]: 

DEPTH@(R)) C DSPACE(S(II)) C DEPTH((g(n))2). 

Any improvement to this is a breakthrough. One approach is to find a “hardest” 
problem in DSPACE(S(II)) and see if it can be accepted by a uniform circuit family 
of subquadratic depth. Some attempts have been made and some graph problems 
have been successfully proved to be complete for DsPAcn(log n) under (log @-depth 
Turing reducibility (will be defined later) [3]. In this paper, we discuss (log @-depth 
many-one reducibility which is proved to be weaker than the logn-depth Turing 
reducibility. We present a new problem which is complete for DsPAcE(logn) under 
our reducibility. 

Some basic definitions are given below. 
A (Boolean) circuit C with n inputs and m outputs is a finite directed acyclic graph 

with nodes (called gates) labelled as follows. The circuit C has n “input gates” with 
indegree zero labelled x1, . . . , x,, respectively. All other gates of indegree zero are 
labelled either 0 or 1. All gates of indegree one are labelled 1. All other gates have 
indegree two and are labelled either V or A. Exactly m gates are labelled output gates 
and have labels yl, . . . , ym, respectively. The size of C is the number of gates of C, 
and the depth of C is the len.gth of the longest path from some input to some output. 
The circuit C computes a function f : (0, 1 } ” --, (0, 1) m in the obvious way. 
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A circuit family with input size g(n) and output size h(n) is a sequence {C, 1 n 2 1) 
of circuits, where C, is a circuit with g(n) inputs and h(n) outputs. Letf= {f, I nl 1) 

be a sequence of Boolean functions, where f, : (0, l} g(n) + (0, 1 jh@). We say that 
the circuit family (C, 1 nr l} computes f iff C, computes f, for all n. A circuit 
family a can also be used to accept a set SE (0, 1 } * if a computes the characteristic 
function of S. 

A circuit family a = {C, 1 n 1 1 } is uniform if the transformation 1’ + C,, (where 
C,, is an encoding of the circuit C,) can be performed in O(log n) space on a deter- 
ministic Turing machine. 

A circuit family a = {C, 1 n ~1) is in DEPTH(~(~)) if a is uniform and there is a 
constant c such that for all n the circuit C,, has depth at most c- d(n). Note that by 
the uniformity condition, if a= {C, I nl 1) is in DEPTH(d(n)), then there is a 
polynomial p such that the size of C, is bounded by p(n) for all n. 

We also say that a functionf : (0,l) * + (0, l> * is in DEPTH@/(n)) if f is computed 
by a circuit family a in DEPTH@(n)), and a language L is in DEPTH(d(n)) if L iS ac- 
cepted by a circuit family a in DEPTH@(K)). The context will always make our mean- 
ing clear. 

2. Logarithmic depth reducibilities 

In this section, we will discuss two different kinds of (log n)-depth reducibilities: 
The (log n)-depth Turing reducibility and the (log n)-depth many-one reducibility. 

To define the (logn)-depth Turing reducibility, we need the notion of an oracle 
gate. An oracle gate in a circuit is a k inputs, one output gate which, on an input 
x of length k, will produce the value 1 on its output edge iff x is in the specified 
oracle set. The contribution of this node to the depth of the path on which it lies 
in the circuit is [log kl . An oracle circuit CA relative to an oracle set A E (0, l} * is 
a circuit whose gates can be oracle gates computing the characteristic function of 
the oracle set A (more precisely, if g is an oracle gate with k inputs in CA, then g 
computes the characteristic function of (0, 1 lk (7 A). An oracle circuit family 
aA = {C,” I n L l} relative to A is then a sequence of circuits such that Ct is an 
oracle circuit relative to A for all n 2 1. 

Given the discussion above, it now makes sense to define uniform oracle circuit 
families, and to define the relative class DEPTHA(d(n)) (for full discussion, the 
reader is referred to [2, lo]). 

Definition 2.1. A language L is log n-depth Turing reducible to a language A (writ- 
ten L I $!?A) if and only if there is a uniform oracle circuit family aA = {Ct I n 1 l} 
in DEPTHA(logn) which accepts L. 

We are more interested in the following “weaker” reducibility. 
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Definition 2.2. A language A is (log@-depth many-one reducible to a language B 
if and only if there is a function f : {O,l} * + (0,l) * which can be computed by a 
circuit family {C, 1 nl l> in DEPTH(log n), such that for all XE (0,l) *, XE A if and 
only if f (x) E B. We will write this relation as A I LtB. 

The following theorem shows that the (log@-depth many-one reducibility is 
“weaker” than the logn-depth Turing reducibility in a natural sense. 

Definition 2.3. Let sA and sB be two reducibilities. (A is strict/y stronger than 
(B if 

(1) for any pair of languages LI and I$;, LI sB La implies L1 IA Lz; 
(2) there is a pair of languages S, and S2 such that S, =A S, holds but S, sB S, 

does not hold. 

Theorem 2.4. The reducibility I SD is strictly stronger than the reducibility 5 “,“. 

Proof. Ladner, Lynch and Selman [7] have given a language L E DEXPTIME which 
is not reducible to its complement co-L under the Karp reducibility. Thus this 
language is not reducible to its complement co-L under the reducibility 5: since 
the circuit families in DEPTH(logn) are of polynomial size (see [4]). However, the 
language L is obviously reducible to its complement co-L under the I y reducibili- 
ty. q 

3. A complete language for DSPACE(lOg n) under I y 

Definition 3.1. Let 5 be a reducibility. A language L is r-hard I%li the c!asr C if 
and only if SI L for all S in C. Further, L is I -complete for C if and only if L 
is I -hard for C and L E C. 

Recently, some graph problems have been successfully proved to be I y-corn- 
plete for DsPAcE(log n) [3] (a closer examination reveals that these problems are also 
5 L,D-complete for DsPAcE(log n)). Here we present a new 5 Lz-complete language 
for DSPACE(lOgn). 

A k-head finite automaton is a Turing machine with only one read-only tape and 
k heads on this tape. We call a k-head finite automaton one-way if all heads of it 
can move only to the right but cannot move to the left (it is allowed for the heads 
to make stationary moves), otherwise we call it two-way. 

Define a language i-k-DFA as follows: 

i-k-DFA = {x # M 1 A4 is a i-way k-head deterministic finite 

automaton accepting the string x} . 
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We are going to prove that I-ZDFA is 5: -complete for nsPAcE(log n). Before 
doing this, we first need some lemmas. 

The first lemma is due to Hartmanis [5]. 

Lemma 3.2. If a language L is in DsPAcE(log n), then there exist an integer k and 
a two-way k-head deterministic finite automaton F accepting L. 

Lemma 3.3. Given a two-way k-head deterministic finite automaton MI, there ex- 
ist a function f,, which can be computed by a circuit family in DEPTH(log n), and 
a one-way (k+ I)-head deterministic finite automaton Mz such that for all x, M2 
accepts f, (x) if and only if MI accepts x. 

Proof. Given a two-way k-head deterministic finite automaton M,, without loss of 
generality, we assume that the running time of M, is not greater than a. nk, where 
n is the length of the input and a is a constant. Then we define 

f, (x) = (x #)k+n”. 

We construct a one-way (k+ I)-head deterministic finite automaton M2 such that 
for all x, M2 accepts ft(x) if and only if MI accepts x. 

M2 will use k of its heads to simulate the k heads of M,, respectively, and use 
the extra head as a counter. More precisely, suppose that the k heads of MI are 
HI, ***, Hk, then let the k -t 1 heads of Mz be Sr, . . . , Sk, Sk+, . At the beginning of 
the computation of the automata, suppose all heads are placed at the left end of the 
inputs. Inductively, if after step i, the head Hj of MI is pointing to the tth symbol 
of the input, then the head Sj of M2 will be pointing to the tth symbol of the ith 
copy of the x# in the string f, (x), i.e., the symbols being poi,ted by Hj and Sj are 
the same, 1 =i~a. nk, 1 cjc k. Mz also remembers in its finite control the current 
state of M,. Therefore in this configuration, Mz can determine completely what MI 
will do in next step. If in next step M, moves its head Hj one square to right, then 
M2 moves its corresponding head Sj n+2 squares to right; if Hj is moved one 
square to left, then S’ is moved n squares to right; finally, if Hj makes a stationary 
move, then Sj is moved n + B squares to right. The extra head Sk,, of Mz is used 
to count these n, n + 1 and n + 2. It is easy to see that after these modifications, Mz 
is in the configuration corresponding to the configuration of M, at the end of the 
(i + 1)st step. M2 accepts f,(x) when it finds that Mr is in an accepting state. For 
each step of M,, the heads of Mz cross at most k copies of x# . Since MI runs in 
time a. nk, there are enough copies (k- a e nk copies) of x# in fi (x) for M2 to com- 
plete the simulation of the whole computation of M,. It is obvious that the func- 
tion fi (x) can be computed by a circuit family in DEPTH(log n) and M2 accepts fi (x) 
if and only if M, accepts x. 0 

Lemma 3.4. Given a one-way k-head deterministic finite automaton M?, there ex- 
ist a function f2, which can be computed by a circuit family in DEPTH(logn), and 
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a one-way two-head deterministic finite automaton M3 such that for all x, M3 ac- 
cepts f2(x) if and only if M2 accepts x. 

Proof. We only prove Lemma 3.4 for the case k = 3, The proof can be easily gener- 
alized for any integer k. 

Given a one-way three-head deterministic finite automaton Mz. Without loss of 
generality, we can assume that the running time of Mz is at most 3n. Given an in- 
put x=x1 . . . x,, E (0, 1) *, the value of the function f2(x) will be a string uuu where 
each segment u is a three-track string of the following form: 

segment 

subsegment subsubsegment 

More precisely, f2(x) will be a three-track string, on the first track the track string 
is (xix2 . . . xJ3’*; on the second track the track string is (x:x; . . . x,“)~“; and on the 
third track the track string is (x~‘x~’ . . . x,“‘)~. Now each position in f2(x) will be a 
possible tape head configuration of M*. For example, the square of fi(x) which 
contains xi, Xj and xh on its first, second and third tracks, respectively, would in- 
dicate that the first, second and third heads of M2 are pointing to the ith, jth and 
hth symbols of the input x, respectively. Now it is easy to see how our one-way two- 
,head deterministic finite automaton M3 simulates M2: M3 uses one head to 
simulate the movements of the heads of M, and uses another head as a counter. 
Suppose that the heads of M2 are S,, S2 and S3 and the heads of M3 are T,, Tz. At 
the beginning of the computations, all heads are placed on the left end of the inputs. 
Inductively, suppose that after the ith step, the heads S,, S2 and S3 of M2 are point- 
ing to the iith, i2th and i3th symbols of the input x, respectively, then the head T, 
of M3 will be pointing to the itth symbol of the i2th subsubsegment of the i3th sub- 
segment of j2(x) (this symbol contains Xi,, Xi2 and Xi3 on its first, second and third 
tracks, respectively). To simulate one step of M2, M3 works as follows: If M2 
moves its head St (S2, S3) one square to the right, then M3 moves its head Tt one 
square (n squares, n2 squares) to the right. The head T2 is used as a counter to 
count these numbers n and n2. It is easy to check that M3 simulates M2 correctly. 
Moreover, the function f2(x) can be computed by a circu-it family in 
DEPTH(lOg n). 0 

Now we can prove our main theorem. 

Theorem 3.5. I-2-DFA is 5 ~-complete for DsPAcE(log n). 
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Proof. To prove that l-ZDFA is in DsPAcn(log n) is easy: Given an input x#M, the 
Turing machine T first checks whether M encodes a one-way two-head deterministic 
finite automaton, then simulates M on input x step by step. T only needs to store 
a triple (s,pI,pz) in the simulation, where s is the current state of M and p1 and p2 
are the current positions of the two heads of M, respectively. Under reasonable 
assumptions, it can be seen that T runs in O(logn) space. 

Let L be a language in DsPAcE(Iog n). By our Lemmas 3.2-3.4, there exist a func- 
tionfs (fs =f20 f,), which can be computed by a circuit family in DEPTH(logn), and 
a one-way two-head deterministic finite automaton M such that for any x, M accepts 
f3(x) if and only if XE L. Thus the function f :x+ f3(x) #M is a witness to the fact 
Lr L, I-ZDFA. 0 

It is interesting to note that there is a fixed one-way two-head deterministic finite 
automaton M whose computation is the “hardest” with respect to the correspond- 
ing parallel implementation. 

Theorem 3.6. There is a one-way two-head deterministic finite automaton Md such 
that if the language accepted by Md is in DEPTH(log’ +“(n)) for some & 10, then 

DSPACE(iOg n) c DEPTH(lOf$ +‘(n)). 

Proof. Since the I-2-DFA is in DsPAcE(log n), th.ere exist a function F,, which can 
be computed by a circuit family in DEPTH(logn), and a one-way two-head deter- 
ministic finite automaton Md such that for any x, Md accepts F,(x) if and only if 
x E 1-2-DFA. Now for a given language L in DsPAcE(log n), since l-2-DFA is 5 Lm- 
complete for DsPAcE(logn), there is a function F2, which can be computed by a 
circuit family in DEPTH(logn), such that for any x, XE L if and only if &(x) E 
l-2-DFA. Combining the functions F, and F,, we conclude that for any x, XE L if 
and only if &(F2(x)) is accepted by the one-way two-head deterministic finite 
automaton Mti It is obvious that the function F= F, 0 F2 can be computed by a cir- 
cuit family in DEP-rH(logn). 0 

We will call the Md in Theorem 3.6 basic one-way two-head deterministic finite 
automaton. 

From Theorem 3.6, we can easily show a graph problem which is I~-complete 
for DSPACE(lOg n). 

We suppose that graphs are represented by adjacency matrices. An acyclic directed 
graph is a tree if it is connected and each node of it has outdegree at most 1. A forest 
is a directed graph such that all of its connected components are trees. We define 
the Forest accessibility problem (FAP) as follows: 

FAP = (F # nl # n2 1 in the forest F there is a directed path from 

node nl to node nz}. 

It is easy to prove the following lemma. 
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Lemma 3.1. A directed graph G is a forest if and only if the following two condi- 
tions hold: 

(1) each node in G has outdegree at most 1; 
(2) no cycles exist in G. 

Theorem 3.8. FAP is 5 ~-complete for DsPAcE(log n). 

Proof. To see that FAP is in DsPAcE(log n), we use the following algorithm: Given 
an input F# nl # n2, we can test if F satisfies conditions (1) and (2) in Lemma 3.7 
in O(log n) space: condition (1) is easy. To make sure condition (2) is satisfied 
assuming (1) is satisfied, we go from each node N in F at most n + 1 steps (where 
n is the number of nodes in F) and see if N can be reached again. If there is a cycle 
in F, then clearly there is a node N in F from which we can reach it again in at most 
n + 1 steps. When F is a forest, we go from node nl and see if we can reach node 
n2, then accept or reject accordingly. 

Now we prove that FAP is I $r -hard for DsPAcE(log n). Let Md be the basic one- 
way two-head deterministic finite automaton and let L E DsPAcE(log n). By Theorem 
3.6, there is a function F, which can be computed by a circuit fami!y in DEPTH(log n) 
such that XE L if and only if F(x) is accepted by M+ Each configuration C of i& 
can be represented as (q,p1,p2) where q is a state of Md, p1 and p2 are the head 
positions of head 1 and head 2, respectively. Given an input F(x), the connections 
of configurations of Md are fixed: There is an edge from configuration Cr to con- 
figuration C2 if and only if Cr is a succeeding configuration of C2. For this fixed 
input, all the configurations and the connections above form a forest FOREST since 
Md is one-way and deterministic. Md accepts F(x) if and only if there is a directed 
path in FOREST from the accepting configuration to the initial configuration. 
Moreover, the function FI : F(x) + FOREST can be computed by a circuit family in 
DEPTH(logn). This Completes our proof. q 

Remark. In [3] it is independently proved that FAP is r y-complete for 
DSPACE(lOg n). 

4. Remarks 

We have shown that the computation performed by one-way two-head finite 
automata is the “hardest” computation in DsPAcE(log n) with respect to parallel im- 
plementation. This fact gives us an evidence that there is an intrinsic difference be- 
tween one-head finite automata and multihead finite automata, as we will discuss 
in next few paragraphes. 

In 1965, Rosenberg [9] claimed that for any integer kr 1, one-way (k+ I)-head 
finite automata are strictly stronger than one-way k-head finite automata, i.e., for 
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each k, there is a language Lk which can be accepted by a one-way (k+ I)-head 
finite automaton but cannot be accepted by any one-way k-head finite automata. 
Rosenberg’s conjecture was finally proved by Yao and Rivest [l 11. The similar 
results were also obtained for two-way finite automata by Ibarra [6]. However, our 
Theorem 3.6 and Lemma 3.2 tell us that there is no intrinsic difference between two- 
head finite automata and k-head finite automata for kr2 with respect to their 
parallel implementations. 

On the other hand, Ladner and Fischer have given a (logn)-depth parallel 
implementation for one-head finite automata [S]. If we believe that 
DSPAcE(logn) # DEPTH(logn), then our Theorem 3.6 shows that it takes more 
parallel time to simulate two-head finite automata than to simulate one-head finite 
automata. 
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