

CSCE-620/VIZA-670 Computational Geometry

Fall 2025

Instructor: Dr. Jianer Chen

Office: PETR 428

Phone: 845-4259

Email: chen@cse.tamu.edu

Office Hours: MWF 2:40 pm–3:40 pm

Assignment # 2 (Due October 29)

1. (Voronoi diagram) Pick arbitrary 15 points in the plane (with no four co-circular), draw the Voronoi diagram for this set of points.
2. (Halfplane intersection) Given n half-planes in E^2

$$a_i x + b_i y + c_i \geq 0 \quad i = 1, 2, \dots, n$$

where a_i , b_i , and c_i are all real numbers. Use divide-and-conquer technique to show that the convex polygonal region formed by their intersection can be computed in $O(n \log n)$ time.

3. (The closest pair) Given two sets of points A and B in the plane, use Voronoi diagram to compute

$$\min_{a \in A, b \in B} \text{distance}(a, b)$$

(in the Euclidean metric) in time $O(n \log n)$ (this should include the time for constructing the Voronoi diagram), where $n = |A| + |B|$.

4. (On-line convex hull) Suppose that points of a set S are given in increasing order by x -coordinate: $S = \{p_1, p_2, \dots, p_n\}$. Design an algorithm such that when the point p_i is given, the algorithm constructs the convex hull of the set $S_i = \{p_1, p_2, \dots, p_i\}$, for $i = 1, \dots, n$. Analyze your algorithm.