CSCE-620/VIZA-670 Computational Geometry

Fall 2025

Instructor: Dr. Jianer Chen

Office: PETR 428

Phone: 845-4259

Email: chen@cse.tamu.edu

Office Hours: MWF 2:40 pm—3:40 pm

Solution to Assignment # 1

1. (Geometric Data Structures I) Show the Doubly-Connected-Edge-List structure
for the following PSLG.

ot
€1 €9
V2 Us
€8
€4 Vg €5
F3
V3 €6 V4

Solution.

L MV |RA|RB[N][N]
e1 | vy | v | By | Fy | ea | ey

€9 V1 V5 F4 F1 €1 €3

ez | v2 |vs | F1 | Fo | er | es

eq | v2 | v3 | F3 | Fy | eg | eg

es | v4 | vs | Fo | Fy | er | e

e6 | V3 | va | F3 | Fy | es | e5

€7 | U4 Ve F3 F2 (&1 €g

€g | VU9 Ve FQ F3 €3 €7

2. (Polygon Intersection) Develop an O(nlogn)-time algorithm for the following
problem: given two polygons P, and Ps, determine if P; and P» intersect at their
edges.

Solution. This problem is obviously related to the segment intersection problem
where we are asked to report all intersections of n line segments. As given in the

class, the segment intersection problem can be solved in time O((n+m)logn), where
m is the number of segment intersections. The algorithm has this time complexity
because at each event point, which can be either an end of a segment or an inter-
section of two segments, we need to do a constant number of insertion and deletion
operations on the sweeping line. Each such an operation takes time O(logn), which
gives the time complexity O((n + m)logn) for the algorithm.

For the polygon intersection problem, as given in this question, we can modify
the segment intersection algorithm such that once we encounter the first intersection,
we simply stop and report. Thus, we have only 2n event points that are the ends of
the n edges of the two given polygons, and the time complexity of the algorithm is
reduce to O(nlogn).

Let e; and es be two edges of the polygons P, or P,. We say that e; and eg
(Py, P»)-intersect if they belong to different polygons and intersect.

The algorithm is given as follows. Compared with the segment intersection algo-
rithm, here the algorithm removes the case where the event point is an intersection
point, and modifies the cases where the event point is an end of a polygon edge:
once we find an intersection point during examining these cases, we immediately
report the intersection and stop the algorithm, instead of inserting the intersection
point into the set EV. Moreover, we also simplify the handling of the event points:
since now only edge ends are event points, we do not need a complicated dynamic
data structure to store them. We can simply pre-sort them and just process them
in the sorted order.

Algorithm Polygon-Intersection

Given: two polygons P1 and P2

Output: report if P1 and P2 intersect

/* We use a vertical line L to sweep the plane. At any moment, the segments
intersecting L are stored in ST, sorted by the y-coordinates of their

intersection points with the line L. The event points stored in EV are
sorted by their x-coordinates. */

e

sort the edge ends in P1 and P2 by x-coordinates: q_1, q_2, ..., q_m;
ST = {};
3. For (h = 1; h <= m; h++)
If (q_h is a right-end of an edge s)
let si and sj be the two edges adjacent to s in ST;
If (s (P1,P2)-intersects si or sj at a point p) Report(p); Stop;
Delete(ST, s);
If ((si and sj (P1,P2)-intersect at a point p’) Report(p’); Stop;
Else /* q_h is a left-end of an edge s */
Insert (ST, s);
let si and sj be the adjacent edges of s in ST;
If (s (P1, P2)-intersects si or sj at p) Report(p); Stop.
4. Report(’no intersection’).

N

Suppose that there are totally n edges in the two polygons P; and P». In step 3, the
algorithm Polygon-Intersection examines every event point, which is an end of
an edge in the polygons P, and P». For each event point, the algorithm takes time
O(logn) to do a constant number of Insert, Delete, and Search (search neighbors of
an edge in the set ST') operations on the set ST, plus some other operations that take
time O(1). Since there are 2n event points, we conclude that step 3 of the algorithm
takes time O(nlogn). This, plus step 1 that sorts the edge ends in O(nlogn) time,
gives the time complexity O(nlogn) for the algorithm Polygon-Intersection.

3. (Convex Hull I) Given n points in the plane such that the z-coordinates of these
points are the integers 1,2,...,n (However, the points are not necessarily sorted by
their z-coordinates). Show that the convex hull of this set can be found in linear
time.

Solution. Consider the algorithm Modified-Graham-Scan that constructs the con-
vex hull for a given set .S of points in the plane:

Algorithm Modified-Graham-Scan
Input: a set S of n points in the plane
Output: the convex hull CH(S) of S;

1. L = the points in S sorted in decreasing x-coordinates: p_1, p_2, ..., p_n;
2. assume p_1 = (x_1, y_1); let p_0 = (x_1, y_1 - 1);
3. Push(K,p_0); Push(K,p_1); /* K is a stack */
4. For (i = 2; i < n; i++)
/* K[1] and K[2] are the 1st and 2nd vertices on the top of K. */
While (K[2]K[1]lp_i is a right-turn) Pop(X);

Push(K,p_1i) .
/* the resulting list minus the point p_O is the upper hull. */
5. construct the lower hull using the reversed list p_n, ..., p_2, p_1;

6. concatenate the upper and lower hulls to form the convex hull CH(S).

Note that besides step 1, steps 2-6 of the Modified-Graham-Scan algorithm takes
time O(n) since each point in S is inserted into and deleted from the stack K at most
once. Thus, on a set S of points that are sorted by x-coordinates, we can construct
the convex hull for S in time O(n). As a result, to have a linear-time algorithm for
constructing the convex hull, we only need to find a linear-time algorithm that sorts
the input points by their xz-coordinates.

As given in the question, the given set S of points have their z-coordinates
1,2,...,n, respectively. This set of points can be easily sorted by their z-coordinates
in linear time: simply place a point (z,y) in the set S in the z-th position in an
array, as given as follows:

Algorithm Linear-Time Sorting
Input: a set S = (p_1, ..., p_n) of n points in the plane whose x-coordinates

are 1, 2, ..., n
Output: array A[1..n], which is the set S sorted by x-coordinates;

1. For (h = 1; h <= n; h++)
let p_h = (x_h, y_h); A[x_h] = p_h;

Thus, if we replace step 1 in the Modified-Graham-Scan algorithm with the algo-
rithm Linear-Time Sorting, we get a linear-time algorithm that constructs the
convex hull of the set S of points that satisfies the assumed condition.

4. (Convex Hull II) Suppose we know that the convex hull of a set of points is a
polygon of no more than loglogn vertices. Design an efficient algorithm to construct
the convex hull.

Solution. Note that Jarvis March constructs the convex hull for a set .S of n points
in time O(kn), where k is the number of vertices on the convex hull, while Graham
Scan constructs the convex hull for S in time O(nlogn) that is independent of the

number k of vertices on the convex hull (the sorting step in Graham Scan sorts all n
given points in the input, regardless of the number of vertices on their convex hull).
Thus, if the convex hull has fewer vertices (i.e., k < logn), then Jarvis March is
faster, while when the convex hull has more vertices (i.e, & > logn), then Graham
Scan is faster.

The set of points given in the question is known to have a convex hull that has
no more than loglogn vertices, i.e., k& < loglogn. Since loglogn is much smaller
than logn, we use Jarvis March that constructs the convex hull for the set that
satisfies the assumed condition in time O(nloglogn).

5. (Monotone polygons) Design an algorithm for the following problem: given a set
of n points in the plane, construct a simple monotone polygon such that the vertices
of the polygon are the points in the given set.

Solution. First note that a monotone chain is a chain that is monotone with respect
to the y-axis, i.e., each horizontal line intersects the chain at at most one point. A
monotone polygon is given by two monotone chains.

When a set S of points is sorted by y-coordinates, a monotone chain containing
all points in S can be easily constructed by just connecting neighboring points in
the sorted list.

To construct a monotone polygon that contains all points in the given set S, we
can first find the highest point pp and the lowest point p; in the set, then construct
two monotone chains between p;, and p;. Note that we also need to make sure that
the two constructed monotone chains do not intersect.

Based on this observation, we have the following algorithm:

Algorithm Monotone Polygon

Input: a set S of n points in the plane
Output: a monotone polygon that contains all points in S;

1. let p_h and p_1 be the highest and lowest points in S, respectively;

2. S_L = the set of points in S that are on the left side of the segment [p_h,p_1];
S_R = the set of points in S that are on the right side of the segment [p_h,p_11;

3. sort S_L in decreasing y-coordinates;
sort S_R in increasing y-coordinates;

4. the concatenation p_h-S_L-p_1-S_R gives a monotone polygon with two monotone
chains p_h-S_L-p_1 and p_1-S_R-p_h.

Step 1 of the algorithm takes time O(n) that finds the points with the largest and
smallest y-coordinates, respectively, in the set S. Step 2 takes another time O(n)
that goes through the points in S to divide S into Sp and Sg. Step 3 sorts in time
O(nlogn) the two sets Sp and Sg by their y-coordinates (note that (Sr,Sg) can
be a very unbalanced partition of S, but each has at most n — 2 points). Step 4
takes time O(n) to concatenate the point py, the chain Sz, and point p;, and the
chain Sr. Note that the two chains S; and Sr cannot intersect because they are
on two different sides of the segment pp,p;. In conclusion, this is an O(nlogn)-time
algorithm that constructs the monotone polygon.

