Chapter 8

Lower Bound Techniques

We have discussed quite a few algorithms for geometric problems, includ-
ing constructing convex hulls of finite sets of points in the plane, solving
proximity problems (e.g., finding the closest pair and the farthest pair, and
constructing Euclidean minimum spanning trees), finding the intersection
of geometric objects, and searching in PSLGs. Most of these problems can
be solved by brute force methods in time O(n?) or more. Our techniques
(geometric sweeping, divide and conquer, prune and search, and reduction)
give faster algorithms for solving these problems. Most of our algorithms
run in linear time or in time O(nlogn). For those linear time algorithms,
we know that we have obtained asymptotically optimal solutions because
even just reading the input for the problems takes linear time. For those
O(nlogn) time algorithms, however, a very natural question is whether we
can further improve them, or, equivalently, are these algorithms the best
possible?

This question brings us to an important, deep, and in general difficult
branch in theoretical computer science, the study of lower bounds of prob-
lems. Here instead of designing a single efficient algorithm for a given prob-
lem, we want to prove that any algorithm solving the problem takes at least
certain amount of time.

Let us look at the problem of constructing convex hulls. We have dis-
cussed the relationship between constructing convex hulls and sorting (see
Section 7.1), we may have realized that an algorithm faster than O(nlogn)
for convex hull is impossible, since as we have seen in Algorithm Analysis
that sorting n numbers requires at least Q(nlogn) comparisons (see, for
example, [2]), and since

SORTING o¢,, CONVEX-HULL,

131

132 LowER BOUNDS

so the problem CONVEX-HULL is at least as hard as SORTING. However,
we are not completely satisfied with this result because in the proof for
the lower bound for SORTING, the underlying computational model is the
comparison trees, which is too restricted and cannot even do multiplication!
The above reduction from SORTING to CONVEX-HULL only shows that the
problem CONVEX-HULL cannot be solved in time less than Q(nlogn) on a
computational model that cannot do multiplications. On the other hand,
just computing the standard Euclidean distance metric requires quadratic
polynomials, which are results of multiplications.

In this chapter, we will introduce a general technique for deriving lower
bounds for geometric problems. We first look closely at the computational
model that can do only comparisons, the linear decision trees, then ex-
tend the result on linear decision trees to a more powerful computational
model, the algebraic decision trees. Lower bounds then are obtained on this
model for most of the geometric problems we have discussed in the previ-
ous chapters. Combining these lower bound results and the algorithms we
have developed for the problems, we conclude that most of those algorithms
developed in the previous chapters are in fact optimal.

8.1 Preliminaries

Let us start with a brief review on geometry. We will denote by E™ the
n-dimensional Euclidean space, and call it the n-space. Let S be a subset
of the n-space E™. The set S is connected if for any pair of points p and ¢
of S, there is a path P adjoining p and ¢ such that P is entirely contained
in S. By the definition, a convex set in E™ is connected. Now consider a
subset W of E™ that is not necessarily connected. A connected component
of W is a maximal connected subset of W (i.e., no subset of W that is a
strict superset of W can be connected). We will denote by #W the number
of connected components of the set W.

A function f(x1,---,x,) is a polynomial if f is a sum of terms of the
form czl'ak? -zl where ¢ and all i;’s are constants, and all i;’s are non-
negative integers. The degree of the term cxzfa:? ---xtn is defined to be
the number i¢; + -+ + 4,. The degree of a polynomial is the maximum
of the degrees of its terms. The function f is a linear polynomial if f is
a degree-1 polynomial. Let fr be a linear polynomial. Then the equation
fr(x1,--- ,x,) = 0 defines a hyperplane in the n-space E"; the open inequal-
ity fr(x1, - ,zn) >0 (or fr(z1, -+ ,2,) < 0) defines an open halfspace in
E", with the hyperplane f(x1,---,x,) = 0 being its boundary; and the

PRELIMINARIES 133

closed inequality fr(z1,---,2,) >0 (or fr(z1,---,2,) < 0) defines a closed
halfspace in E™, with the hyperplane f(z1,---,2,) = 0 being its boundary.
It is easy to see that hyperplanes, open halfspaces, and closed halfspaces are
all convex sets in E".

Let S be the set of points (z1,- - ,zy) satisfying a sequence of relations:
f1(177n):07 izlv"'7m17
9](1’177$n)>0» j:17”'7m27
hk(l’l,--' ,:cn) Z O; k= 1,“' , s,

where all functions f;, g;, and hy, with i = 1,--- ,mq, 7 = 1,--- ,ma, and
k =1,---,mgs, are linear polynomials. Then the set S is the intersection

of the hyperplanes f; = 0, for 1 < i < my, the open halfspaces g; > 0,
for 1 < j < mgy, and the closed halfspaces hy > 0, for 1 < k < ms.
Since hyperplanes, open halfspaces, and closed halfspaces are all convex, by
Theorem 3.1.1, the set S is also convex.

A problem is a decision problem if it has only two possible solutions,
either the answer YES or the answer NO. Abstractly, a decision problem
consists simply of a set of instances that contains a subset called the set of
YES-instances. As we have studied in Algorithm Analysis, decision problems
play a very important role in the study of NP-completeness theory. In
practice, many general problems can be reduced to decision problems such
that a general problem and the corresponding decision problem have the
same or similar complexity.

There are certain problems where it is realistic to consider the number
of branching instructions executed as the primary measure of complexity.
In the case of sorting, for example, the outputs are identical to the inputs
except for their orders. It thus becomes reasonable to consider a model in
which all steps are two-way branches based on a “decision” that we should
make when computation reaches that point.

The usual representation for a program of branches is a binary tree
called a decision tree. Each non-leaf vertex represents a decision. The test
represented by the root is made first, and “control” then passes to one of its
children, depending on the outcome of the decision. In general, the control
continues to pass from a vertex to one of its children, the choice in each
case depending on the outcome of the decision at the vertex, until a leaf is
reached. The desired output is available at the leaf reached. If the decision
at each non-leaf vertex of a decision tree is a comparison of a polynomial of
the input variables with the number 0, then the decision tree is called an
algebraic decision tree.

134 LowER BOUNDS

The algebraic decision tree model may look much weaker than a real
computer, but it is probably more powerful than what we would think.
First of all, given a computer program, we can always represent the exe-
cutions of the program on all inputs of a fixed length by a decision tree
by “unwinding” loops in the program executions. Secondly, the operations
a real computer can perform are essentially additions and branchings. All
other operations are in fact done by microprograms that consist of those
elementary operations. For example, the value of sin(z) for a number z
is actually obtained by an approximation of the Taylor’s extension of the
function sin(zx). Finally, we simply ignore the computation instructions and
concentrate on only branching instructions because we are working on lower
bounds of algorithms. If we can prove that for a problem instance, at least
N branchings should be made, then of course, the number of total instruc-
tions, including computation instructions and branching instructions, is at
least N.

Let us now give a less informal definition. We will concentrate on the
decision tree model for decision problems.

Definition An algebraic decision tree for a decision problem @ is a binary
tree that, on n variables (z1,--- ,zy), which are for all instances of length
n of @, has its vertices labeled with the statements as follows.

1. each non-leaf vertex v is labeled with a statement L of the form
if f(z1, -+ ,2zn) >0 then goto w; else goto wo,
where f(z1,- -+ ,x,) is a polynomial of (1, -+ ,z,), X is a comparison
relation in the set {=, >, >} (note this also covers the operations “<”
and “<”), and w; and wg are the children of the vertex v in the tree;

2. each leaf vertex is labeled with a statement either YES or NO.

If all polynomials at non-leaf vertices of an algebraic decision tree are
linear polynomials, then we call the tree a linear decision tree.

Let P be a decision problem whose instances are sets of real numbers.
If we fix an input length n, and consider the instants of P that consist of
n real numbers. Then P corresponds to a subset W of the n-space E"
such that a point (x1, -+ ,z,) € E™ is in W if and only if the answer of
the problem P to the instance (z1,---,x,) is YES. Let 7" be an algebraic
decision tree that “solves” the problem P in the following way: for any point
p= (21, -+ ,xn) € E™, the answer of P to the instance p is YES if and only
if when we feed the root of the algebraic decision tree 1" with the input p,
then eventually we are led to a YES-leaf v in the tree T' by following the

ALGEBRAIC DECISION TREES 135

decisions made on the non-leaf vertices on the path from the root to the leaf
v in the tree T'. In this case, we also say that the algebraic decision tree T’
accepts the subset W in E".

8.2 Algebraic decision trees

The depth of a tree is the length of the longest path from the root to a leaf
in the tree. It is easy to see that the depth of an algebraic decision tree
corresponds to the worst case time complexity of the tree. Therefore, to
derive a lower bound on the worst case time complexity of a problem P, it
suffices to derive a lower bound on the depth of the algebraic decision trees
that solve the problem P. In this section, we show a lower bound on the
depth of an algebraic decision tree, assuming that we know the number of
connected components of the corresponding subset in E™ the tree accepts.
We first observe the following simple lemma.

Lemma 8.2.1 The depth of a binary tree with m leaves is at least [logm].

Let P be a decision problem, and let W be the subset of E™ that cor-
responds to the YES-instances of the problem P in E™. Thus, a point
p = (z1, - ,x,) in E™ is in the set W if and only if the solution of the
problem P to the input p is YES. Let T be an algebraic decision tree that
solves P, or equivalently, that accepts the subset W.

Suppose in some way that the number #W of the connected components
of the set W is known. What can we say about the depth of the algebraic
decision trees that accept W7 We answer this question first for the linear
decision tree model, then we extend the result to the generral algebraic
decision tree model.

Theorem 8.2.2 Let W be a subset of the n-space E™, and let T be a linear
decision tree of n variables that accepts the set W. Then the depth of T is
at least [log(#W)].

PrOOF. Every path from the root to a leaf [in T corresponds to a sequence
of conditions:

fz(xlvaxn):ov Z.Z]-v"'7m17
9](3317 7xn)>0, j=17 , T2, (81)
hk(‘r177xn)207 k=17"'7m37

136 LowER BOUNDS

which are the testings occurring on the path. Each of these functions is a
linear polynomial since we assume that the tree 1" is a linear decision tree.
If we feed the root with a point p = (x1,---,x,) in E™, then the point p
eventually goes to the leaf [if and only if the coordinates (x1,--- ,xy,) of p
satisfies all the conditions in (8.1). Therefore, the leaf [corresponds to a set
S; of points in E™ that satisfy all the conditions in (8.1). Thus, the set .S;
is the intersection of the hyperplanes, the open halfspaces, and the closed
halfspaces represented by these conditions. By the discussion we gave in
the last section, we conclude that the set 5; is convex. Consequently, 5; is
connected.

Now let I be a YES-leaf, then the corresponding set .5; is a subset of the set
W. Since S is connected, by the definition of a connected component that
a connected component of W is a maximal connected subset of W, .S; must
be entirely contained in a single connected component of W. Therefore,
each YES-leaf of the linear decision tree T only accepts points in a single
connected component of W. Since W has #W connected components, and
each point of W should be accepted by some YEs-leaf of T', we conclude that
the tree T contains at least #W YEs-leaves. Consequently, the number of
leaves of T is at least #W. Now by Lemma 8.2.1, the depth of the linear
decision tree T is at least [log(#W)]. U

The linear decision tree model seems too restricted (people would never
be happy if you tell them that their computers cannot do multiplications). It
is desired to extend the result above for the linear decision tree model to the
more general algebraic decision tree model. Let us see what is the obstacle
to such an extension. Suppose that an algebraic decision tree T accepts a
subset W of E". Each YES-leaf [of T" accepts a subset .S; of the set W. The
subset S is again the intersection of the subsets presented by the conditions
appearing on the path from the root to the leaf [in the tree T'. However, since
the polynomials at the non-leaves of T" are not necessarily linear polynomials,
the set S; may be not connected.! Therefore, each YES-leaf now can accept
points from (possible many) different connected components of W. Suppose
that each YES-leaf can accept points from at most ¢ connected components,
then the only thing we can conclude is that there are at least #W/c YES-
leaves. Therefore, by Lemma 8.2.1 again, we conclude that the depth of T is
at least [log(#W/c)]. In the case where the number c is of the same order
as #W, we will only obtain a trivial constant lower bound on the depth of
the algebraic decision tree T.

!For example, in the n-space E?, even a single condition with a non-linear polynomial

z? — y? > 1 defines a non-connected area.

ALGEBRAIC DECISION TREES 137

On the other hand, if the number ¢ above is bounded by some constant,
then [log(#W/c)]| will have the same order as [log(#W)], thus again we
obtain a nontrivial lower bound on the depth of the algebraic decision tree
T. Therefore, we would like to know under what conditions the number c,
i.e., the maximum number of connected components whose points can be
accepted by a single leaf of an algebraic decision tree, can be bounded. Here
is a condition:

Theorem 8.2.3 (Milnor-Thom) Let W be the set of points in the n-space
E™ defined by the conditions

fi(mla"' 73771):07 i:17"‘,h, (82)

where all f; are polynomials of degree bounded by d. Then the number #W
of connected components of the set W is bounded by d(2d — 1)"_1, a number
that is independent of the number of the conditions in (8.2).

The above theorem is a deep result in algebraic geometry. However, the
idea of the theorem is fairly intuitive: a polynomial of small degree defines
a subset of “simple shape” in a Euclidean space, and the intersection of
“simple-shape” subsets in a Euclidean space cannot have a very complicated
shape, that is, it cannot have many pieces of connected components.

Unfortunately, Milnor-Thom Theorem cannot be used directly to our
algebraic decision trees: it only covers the case of equalities, while our al-
gebraic decision trees also have inequalities. Thus, it is necessary to extend
Milnor-Thom Theorem to cover inequalities.

Lemma 8.2.4 Let W be the set of points in the n-space E™ defined by the
following conditions:

fl($1,,a?n):0, i:]-v"'7m17
gj(xlv"'7$n)>0; J=1 ,mo, (83)
hk(fl,al’n)ZO, k:]-?'”7m37

where all f;, g;, hy, are polynomials of degree bounded by d. Then the number
of connected components of the set W is bounded by d(2d — 1)"Tm2tms—1,

PROOF. Suppose that W has r distinct connected components C;, 1 <@ <.
Arbitrarily pick a point p; = (xgl), e ,an(f)) from the connected component

C;, 1 <i < r. Consider the rms real numbers

gi@ 2@y 1< j<my, 1<i<n

138 LowER BOUNDS

Note that all these rms real numbers are positive since all these points
P = (:cgi),-u 75053)), 1 <i<r,arein W. Let ¢ > 0 be the smallest real
number in these rmsy real numbers.

Consider the set W’ in E™ defined by the following conditions:

fi(ll)l,"',l’n):(); i=1,---,m1,
gj(:nla"'axn)_ezo; jzlv'”amQ (84)
hip(z1,-+ ,xn) >0; k=1,--- ms.

We claim that the number of connected components of the set W' is at least
as large as that of the set W. In fact, the set W is a subset of the set W since
a point satisfying the conditions in (8.4) obviously satisfies the conditions
in (8.3). Thus, no two connected components of W can be “merged” into
a single connected components of W’. Moreover, no connected components
of W can completely disappear in W’ — for each connected component C;
of W, at least the chosen point p; satisfies all conditions in (8.4), by the
definition of the number e. Therefore, instead of bounding the number
of connected components of the set W, which is defined by the equalities,
the open inequalities, and the closed inequalities of (8.3), we can work on
the bound of the number of connected components of the set W', which is
defined by the equalities and the closed inequalities of (8.4).

The technique of converting a closed inequality into an equality is well-
known in linear programming. For the set W’ defined by the conditions
in (8.4), we introduce my + mg new variables y; and 2, 1 < j < mo,
1 < k < mg, and construct the following m; + mo + mg conditions with
n + mg + mg variables x;, y;, 2, 1 <i<n, 1 <j<mo, 1 <k <mg:

fl($177xn):07 izl)"'vmlv
. 2 _n. .
gi(@1,-+an) —€e—y; =0; j=1,- mo, (8.5)
hk(xl,---,xn)—z,%zo; k=1,---,ma3.

Let W” be the subset of the (n-+mg+ms)-space E" 213 that is defined by
the conditions in (8.5). It is easy to see that the number #W" of connected
components of W is the same as the number #W' of connected components
of W', which is at least as large as the number #W of connected components
of the set W. By Milnor-Thom Theorem, the number #W” is bounded
by d(2d — 1)"t"2t™s~1 Therefore, the number #W is also bounded by
d(2d — 1)"T™m2Ftms =1 Thig completes the proof of the lemma. [

Now similar as the proof for the case of linear decision trees, we can
prove a lower bound on the depth of general algebraic decision trees.

ALGEBRAIC DECISION TREES 139

Definition An algebraic decision tree is of bounded-order if its degree is
bounded by a fixed integer d, which is independent of the input size n.

Theorem 8.2.5 (Ben-or’s Theorem) Let W be a subset of the n-space
E™. Then any bounded-order algebraic decision tree T that accepts W has
depth at least Q(log #W —n).

PRrROOF. Suppose that T is an order d algebraic decision tree that accepts
the set W, where d is a fixed constant independent of n. Let [be a YES-leaf
of the tree T that is associated with the following conditions:

fi(xlv"'7xn):0; Z.Z]-v"'7m17
Qj(l“lv"‘ wxn) > 07]Z 17 , M2, (86)
hk($17"'7xn)20; k=1,~--,m3,

where all f;, g;, hy are polynomials of degree bounded by d.

Let W; be the subset of W that is accepted by the YEs-leaf [of T, that is,
W is the subset of E™ defined by the conditions in (8.6). Since mj+ma+ms
is the length of the path from the root of the algebraic decision tree T to
the leaf I, m1 4+ mgy 4+ m3 is bounded by the depth A of the tree T

By Lemma 8.2.4, the number of connected components of the set W,
is bounded by d(2d — 1)""™2+ M1 which is bounded by d(2d — 1)" "1,
where h is the depth of the tree T. Now since the set W has #W con-
nected components, and each point of W must be accepted by some YES-
leaf of T', we conclude that the algebraic decision tree T has at least
#W/(d(2d — 1)"*"~! leaves. By Lemma 8.2.1, the depth h of the tree T'

is at least
log #W

h > log(#W) —logd — (n+h —1)log(2d — 1).

From this, we get

Therefore, the depth h of the algebraic decsion tree T is at least

T loz2d =1 10g22 =) (log(#W) — nlog(2d — 1) + log((2d — 1)/d)).

When the number d is a fixed constant, we get h = Q(log(#W)—n).

140 LowER BOUNDS

By Theorem 8.2.5, to derive a lower bound on the time complexity of a
problem @), i.e., a lower bound on the depth of the bounded-order algebraic
decsion trees that solve the problem (), we may consider the corresponding
set W in the n-space E™ for all n, then compute the number of connected
components of the set W. We will use this technique to derive non-trivial
lower bounds for several problems.

8.3 Proving lower bounds directly

With the lower bounds on the depth of algebraic decision trees obtained in
the last section, now we are ready to derive lower bounds for many problems.
Some of these problems are combinatorial problems that are fundamental
in combinatorics and closely related to the geometric problems we have
studied. The problems we are going to develop lower bounds using Ben-
or’s Theorem directly include EXTREME-POINTS, ELEMENT-UNIQUENESS,
UNIFORM-GAP, and SET-’S DISJOINTNESS.

The basic idea is as follows: given a decision problem @, we formulate
the YES-instances of @ with n parameters into a subset W of the n-space E™.
Then we derive a lower bound B on the number of connected components of
the subset W. Now by Ben-or’s Theorem, the logarithm of B gives a lower
bound on the depth of bounded-order algebraic decision trees that solve the
problem @), that is in consequence a lower bound on the computational time
of the algebraic decision trees (thus, the computational time of algorithms)
solving the problem Q).

Recall that bounded-order algebraic decision trees are algebraic decision
trees whose degree is bounded by a fixed constant that is independent of the
input length.

8.3.1 Element uniqueness

We start with a simplest example, the problem of ELEMENT-UNIQUENESS,
which is formally defined as follows.

ELEMENT-UNIQUENESS
Input: a set S of n real numbers.
Question: are all numbers in S distinct?

We derive a lower bound for the problem ELEMENT-UNIQUENESS by
using Ben-or’s Theorem (Theorem 8.2.5) directly.

ProvING LOWER BOUNDS 141

Theorem 8.3.1 Any bounded-order algebraic decision tree that solves the
problem ELEMENT-UNIQUENESS runs in time 2(nlogn).

Proor. Adopting the standard technique, we first consider the number of
connected components of the following set in the n-space E™:

W ={(x1,--- ,zn) | all z;’s are distinct}.

A point p = (z1,--- ,xy) in n-space E™ is a YES-instance of the problem
ELEMENT-UNIQUENESS if and only if the point p belongs to the set W.
Fix a point p = (z1,- -+ ,xy,) in n-space E™ in which all x;’s are distinct.

Consider the n! points in the n-space E™ obtained by permuting the numbers
in (1, ,x,):

a(p) = (To(1)s" s Ta(n)); o is a permutation of (1,---,n).

Clearly, all these n! points are in the set W. We claim that no two of
these n! points are in the same connected component of W. We prove this
by contradiction. Suppose that o and ¢’ are two different permutations of
(1,---,n) and that the points o(p) and o’'(p) are in the same connected
component of W. Then there is a continuous path P in W connecting o(p)
and ¢’(p). The path P can be written in its parametric form:

P(x) = (fix), fa(x), ..., ful2)), 0<a <1,

where f;(x) are continuous functions, 1 < i < n, such that P(0) = o(p) and
P(1) = o’(p). That is, we have

fi(0) = 0 and fi(1) = Lol (4)> for 1 <i<n.

Since ¢ and ¢’ are different permutations of (1,---,n), we can find an
index k such that . is the smallest number in o(p) such that @, #
Zyi(k)- Note that this means z,) < T/ (r). Suppose that x4y = x4 for
some index h # k, then we also have x4 (1) > Zy(x) = Zo/()- Thus, we have

To(k) < To(h) and Tol (k) = To(k) = To’(h)-
Since fi(z) and fp,(x) are continuous functions with
f60) = 2oy, fr(D) = 2oy, [o(0) = 2oy, fu(1) = 2o n),

and from above we have

Je(0) < fr(0) and fp(1) > fr(1),

142 LowER BOUNDS

there must be a real number « in the interval (0, 1) such that fi(a) = fr(@).
However, by our assumption, the point

Pla) = (fila), fa(@), -, fu(@))

is on the path P that is entirely in the set W, so all numbers in P(a) must
be distinct, contradicting the fact fx(a) = fr(«). This contradiction proves
that there are no two permutations o and o’ of (1,2,...,n) such that the
points o(p) and o’(p) are in the same connected component of the set W.

Thus the set W has at least n! connected components, i.c., #W > nl.
Now since

n o n n. g
l=1.2..... — (=1 > (=
n 2 n>3z (2+) n_(2) :
we have
log(#W) > log(n!) > log (5)* = 5 log(5) = Anlogn).

By Ben-or’s Theorem (Theorem 8.2.5), any bounded-order algebraic decision
tree that solves the problem ELEMENT-UNIQUENESS runs in time at least

Qlog(#W) —n) = Q(nlogn).

This completes the proof of the theorem. [

8.3.2 Uniform gap

Let S = {x1,29,...,2,} be a set of real numbers. We say that the set S
has a uniform gap g if after sorting the set S into a non-decreasing sequence
Ty < Ty < -+ <y, we have x;, | — @, =gforallk, 1 <k<n-1.

The UNIFORM-GAP problem is formally defined as follows.

UNIFORM-GAP
Input: a set S of n real numbers.
Question: does the set S have a uniform gap that is larger than 07

Theorem 8.3.2 Any bounded-order algebraic decision tree that solves the
problem UNIFORM-GAP runs in time Q(nlogn).

PrOOF. The proof is similar to the proof of Theorem 8.3.1.
Consider the following set in the n-space E™:

W ={(x1, -+ ,zn) | (1, -+ ,xy) is a YES-instance of UNIFORM-GAP}.

ProvING LOWER BOUNDS 143

Thus a point (z1,---,x,) in the n-space E™ is in the set W if and only if
there is a permutation o of (1,2,--- ,n) such that z,(;11) — 5) = g > 0 for
all 4, 1 <i<n—1, where g is a fixed constant independent of the index q.

Fix a point p = (21,29, ,x,) in W such that z;41 —x; = g > 0 for
all 1 <i < n—1. Consider the n! points in the n-space E™ obtained by
permuting (z1,z2, -+ ,Tp):

o(p) = (To1)s " > To(n))s o is a permutation of (1,2,--- ,n).

Clearly, all these n! points are in the set W. We claim that no two of these
n! points are in the same connected component of WW. Assume the contrary
that o and ¢ are two different permutations of (1,2,---,n) and that the
points o(p) and ¢’(p) are in the same connected component of W. Then
there is a continuous path

P(z) = (fi(z), fa(2), ., ful2)), 0 <2 <1,

in W connecting the two points o(p) and o’(p), such that P(0) = o(p) and
P(1) = o/(p). That is, there are n continuous functions f;(z), 1 < i < n,
such that

fz(o) = Ty (i) and fz'(l) = o/ (3)> for 1 <i<n.

Exactly the same as in the proof of Theorem 8.3.1, we can find two indices
k and h such that

fe(0) < fn(0) and fix(1) > fa(1).

So there exists a real number « in the interval (0, 1) such that fi(a) = fr(@).
But then the point P(a) = (fi(a), fa(a), -+, fn(a)) on the path P(z) would
not be in the set W since the distance between the numbers fi(a) and
fn(a) is 0 so the set { fi(a), fa(a), ..., fn(a)} cannot have a positive unform
gap. This contradiction proves that the set W has at least n! connected
components, i.e., #W > n!. By Ben-or’s Theorem (Theorem 8.2.5), any
bounded-order algebraic decision tree that solves the problem UNIFORM-
GAP runs in time

Qlog(#W) —n) = Q(nlogn)

This completes the proof of the theorem. []

144 LowER BOUNDS

8.3.3 Set disjointness

The third problem we study is the following problem.

SET-DISJOINTNESS
Input: two sets X and Y of n real numbers.

Question: X NY =07

For an instance (X,Y) of the problem SET-DISJOINTNESS, where we
assume X = {z1,z9, -+ ,xn} and Y = {y1,y2, - ,yn}, wWe associate it with
a point in the (2n)-space E%":

($17y17 L2,Y2,: " 7mn7yn)-

This mapping gives a one-to-one correspondence between the points in E2"
and the instances of size n of the problem SET-DISJOINTNESS if we suppose
that the elements of the sets X and Y are given in some order (we call (X,Y")
an instance of size n if each of the sets X and Y contains n real numbers.)
Let W be the subset of E?" that corresponds to the YES-instances of size
n of the problem SET-DISJOINTNESS. We prove that W has at least n!
connected components.
Fix two sets X = (21,22, -+ ,x,) and Y = (y1,92, - ,Yn) such that

T1>Y1 >Ta>Y > - > T > Yn.

Then (X,Y) is a YES-instance of the problem SET-DISJOINTNESS that cor-
responds to the point

b= ($17y17$27y27’ o 7xn7yn)

in the (2n)-space E?". Thus the point p is in the set . Consider the n!
points in 2" that are obtained by permuting the n components in p with
even indices (i.e., the “y-elements” in p). That is, consider the n! points

o(p) = (T1,Yo(1)> T2 Yo (2)s - - » Trvs Yor(m))

where o is a permutation of (1,2,--- ,n).

Clearly, all these n! points o(p) are in the set W. We prove that no two
of these n! points are in the same connected component of W. Assume the
contrary that o and ¢’ are two different permutations of (1,2,---,n) and
that the points o(p) and o’(p) are in the same connected component of W.
Then there is a continuous path P(z):

P(z) = (h1(z), fi(x), ha(z), f2(2), ..., hn(), fu(2)), 0< o<1,

ProvING LOWER BOUNDS 145

in W connecting the two points o(p) and o’(p), i.e., P(0) = o(p) and P(1) =
o'(p), where all h;(t) and f;(t), 1 <14 < n, are continous functions. with
hi(0) = hi(1) = z;; for1<i<mn
[i(0) = Yoy and fi(1) = ypr(s); for 1 <i<mn.
Since ¢ and o’ are different permutations of (1,2,---,n), we can find an
index k such that y,() is the smallest number in (y1,---,y,) such that
Yo(k) 7 Yo' (k). SINCE Yq(zy is the smallest such a number in (y1,y2,* , yn),

we have Y, (1) < Yor(r)- By the definition of the point p, there must be an x;
in (1,29, -+ ,x,) such that

Yo(k) < Tl < Yo! (k)
Now consider the function F'(t) = h(t) — fr(t), we have
F(0) = hi(0) = fx(0) = 21 — Yor) > 0
and
F(1) =M(1) = fi(1) = 21 — Yor(z) < 0.

The function F'(t) is continuous because h;(t) and fy(t) are. Therefore, there
is a real number « such that 0 < o < 1 and

F(a) = h(a) — frla) =0
That is, hj(a) = fr(a). However, by our assumption, the point

Pla) = (hi(a), fi(a), ha(a), f2(a), -+, ha(@), fu(@))

on the path P is in the set W, so the sets {hi(a), ha(c),...,hi(a)} and
{fi(a), fa(a), ..., fi(a)} should be disjoint. In particular, the numbers
hi(o) and fi(«) should be different. This contradiction proves that for
each different permutation o of (1,2,...,n), the point o(p) is in a different
connected component of the set W.

Thus the set W has at least n! connected components, i.e., #W > nl.
By Ben-or’s Theorem (Theorem 8.2.5), any bounded-order algebraic decision
tree that solves the problem SET-DISJOINTNESS runs in time at least

Q(log(#W) — n) = Q(nlogn).
The above discussion gives the following theorem.

Theorem 8.3.3 Any bounded-order algebraic decision tree that solves the
problem SET-DISJOINTNESS runs in time Q(nlogn).

146 LowER BOUNDS

8.3.4 Extreme points

The above three problems are combinatorial problems. In this subsection,
we derive a lower bound for a geometric problem, which is called EXTREME-
PoINTS problem that is closely related to the problem CONVEX-HULL. The
proof is again similar to those given above, though slightly more complicated.

Definition Let S be a set of points in the plane E2. A point p € S is an
extreme point of S if p is on the boundary of the convex hull CH(S), and p
is not an interior point of any boundary edge of CH(S).

The CONVEX-HULL problem is to find all extreme points of a given
set S in the counterclockwise order with respect to some interior point of
CH(S). The following decision problem has an obvious relationship with the
CoNVEX-HULL problem.

EXTREME-POINTS
Input: a set S of n points in the plane E?.
Question: are all points in S extreme points of S7

The EXTREME-POINTS problem seems “simpler” than the CONVEX-
HuLL problem since it is not required to check the counterclockwise order
of the extreme points on the boundary of the convex hull CH(S). We will
see, however, that it takes the same amount of time to solve the EXTREME-
POINTS problem as to solve the CONVEX-HULL problem.

A point p in the plane E? can be uniquely represented by an ordered pair
of two real numbers p = (x,y), where z and y are the z- and y- coordinates
of p, respectively. Similarly, an ordered list of 2n points (p1,p2,--- ,P2n)
in the plane E? can be uniquely represented by a tuple of 4n real num-
bers (p1,p2,- - ,pan) = (T1, 22, X3, T4, , Tapn), where p; = (x9;_1,x2;), for
1 < i < 2n. Therefore, each (2n)-point instance (p1,p2,--- ,p2,) for the
EXTREME-POINTS problem uniquely corresponds to a point in the (4n)-
space E4". Conversely, any point (21,2, ,T4,) in the (4n)-space E*"
can be interpreted uniquely as a (2n)-point instance (p1,pa, - - ,p2y,) for the
EXTREME-POINTSS problem, if we let p; = (9,1, x2;), for 1 <i <2n. Asa
result, the set of (2n)-point YES-instances of the EXTREME-POINTS problem
is a subset of the (4n)-space E*". Note that a set S = {p1,p2,--- ,pan} of
2n points in the plane E? can correspond to up to (2n)! different ordered
lists, thus (2n)! different points in the (4n)-space E*", if we consider all
permutations of the 2n points in S. Thus any set of 2n points in the plane
makes (2n)! different instances for the EXTREME-POINTS problem.

ProvING LOWER BOUNDS 147

Lemma 8.3.4 Let W be the subset of the (4n)-space E*" that corresponds
to the set of (2n)-point YES-instances for the EXTREME-POINTS problem.
Then W has at least n! connected components.

PROOF. We construct n! points in the set W and prove that no two of these
points are in the same connected component of the set W.

Let I = (p1,q1,P2,G2," "+ s Pn,qn) be a counterclockwise sequence of 2n
distinct extreme points of a convex polygon. Then I € E4" is a point in the
set W. Consider the following n! different sequences of (2n)-point instances
of the problem EXTREME-POINTS:

O-(I) = (p17 qa’(l)7p27 qa(2)7 ©t 5, Pn, ch(n))§ (87)

o is a permutation of (1,...,n),
where each sequence (qo(1),9s(2); " »qo(n)) I8 @ permutation of the se-
quence (q1,q2, - ,qn). Each instance o(I) corresponds to a point in the

(4n)-space E4". Since the instances o(I) share the same set of 2n points
{p1,q1, -+ ,Pn,qn} in the plane E? with the instance I and I is a YES-
instance of the problem EXTREME-POINTS, the instance o(I) for each o
of the n! permutations of (1,2,...,n) is also a YES-instance of the prob-
lem EXTREME-POINTS (i.e., every point in o([) is an extreme point of the
point set o(I)). As a result, the instances o(I) for the n! permutations of
(1,2,...,n) correspond to n! points in the set W.

We prove that any pair of instances in (8.7) are in two different connected
components of the set W. Suppose the contrary that there are two instances
o(I) and o’(I) in (8.7) that are two points in E*" and are in the same
connected component of the set W. Then there is a continuous path P(z) =
(h1(2), fi(x),..., hp(x), fo(z)) in W that adjoins the two points o(I) and
o' (I). More precisely, there are 2n continuous functions on the interval [0, 1]
that map the real numbers in [0, 1] to E? (recall that each of the functions
h; and f; gives a point in E?):

h1($)7 fl(l')v hZ(:E)v f2($)’ Tty hn($)7 fn(x),
such that hy(0) = hy(1) = pg, and fx(0) = gy and fr(1) = gory, for
k=1,2,---,n,and, for all z € [0,1], the point
P(x) = (hi(2), fr(@), hao(x), f2(2), -+ hn (@), fu(2))

is in the subset W of E*", and P(0) = o(I) and P(1) = o’(I).
Since o(I) and o'(I) are two different instances in (8.7), there must
be an index k such that g¢,) and gg () are different points in the set

148 LowER BOUNDS

{¢1,92, -+ ,qn}. Pick k such that o(k) is the smallest index such that
Qo(k) 7 do'(k)> and let o(k) = i. Then i < o'(k) < n. Consider the tri-
angle A(pigipit1) = O(pigo(k)yPi+1), Whose three points are three consec-
utive extreme points in the counterclockwise order of the convex polygon
I'=(p1,q1,p2:q2,*+ ;Pn:qn). Thus, the turn from p; to gyr) = ¢i to pi+1 is
a left turn, so the signed area Area(piq,(k)pi+1) = Area(h;(0)fi(0)hiy1(0))
of the triangle A(piqg(k)pi+1) is positive. On the other hand, since we have
o'(k) # i, the turn from p; to Qo (k) tO pi+1 is a right turn so the signed area
Area(piqo(k)pi+1) = Area(hi(1)fi(1)hiy1(1)) of the triangle A(pigys (k)Pi+1)
is negative.

Since h;(z), fi(z), hiy1(x) are all continuous functions of the variable z,
the signed area Area(h;(z)f;(x)h;+1(z)) of the triangle A(hy(x)fi(z)ha(z))
is also a continuous function of the variable z. This, combined with the facts
Area(hi(0)fi(0)hi+1(0)) > 0 and Area(h;(1)fi(1)hi+1(1)) < 0, implies that
there is a real number « € (0,1) such that Area(h;(«)fi(a)hir1(a)) = 0,
i.e., the three points h;(«), fi(a), and h;+1(«) are co-linear. That is, on the
path P(x), there is a point

P(a) = (hl(a)7 fl(a)7h2(a))f2(a)7 T >hn(04)7 fn(a))7

where 0 < o < 1, in which three points h;(a), fi(a), and h;y1(a) in the
plane E? are co-linear. It is easy to see that for three co-linear points, at
least one of the points cannot be an extreme point of the set P(«). Thus,
the point P(a) in the (4n)-space E*" is not a YES-instance of the EXTREME-
PoinT, thus is not in the set W, contradicting the fact that the entire path
P(z), with 0 <z <1, is contained in the set W.

The contradiction proves that no two points in (8.7) can be in the same
connected component of the set W. Since there are n! different points in
(8.7), we conclude that the set W has at least n! connected components. [

Now combining Lemma 8.3.4 with Theorem 8.2.5, we easily obtain a
lower bound for the problem EXTREME-POINTS.

Theorem 8.3.5 Any bounded-order algebraic decision tree that solves the
problem EXTREME-POINTS runs in time Q(nlogn) on an input of n points
i the plane.

PROOF. Since we are working on the worst-case time complexity, we only
need to show that for some integers n, the theorem holds true.

Let n = 2m, and consider the EXTREME-POINTS problem for instances
consisting of n points in E?, which correspond to points in the (4m)-space

LowER BOUNDS BY REDUCTION 149

E*"_ By Lemma 8.3.4, the subset W of E4™ that corresponds to the YEs-
instances of EXTREME-POINTS on 2m points has at least m! connected com-
ponents, i.e., #W > m!. By Theorem 8.2.5, the depth of a bounded-order
algebraic decision tree solving EXTREME-POINTS is Q(log(#W)—4m). From

mo/m m m\ 2
l—1.9... _.(_ 1)(_ 2) (_)
m m>2 2—|— 2+ m > 5 ,

we derive

log(#W) > log(m!) > log (<%>?> = %log <%) .

Now the depth of the algebraic decision tree is Q(log(#W) — 4m) =
Q(mlogm) = Q(nlogn). O

8.4 Deriving lower bounds by reductions

The techniques used in the last section for deriving lower bounds on problems
seem impressive. Such elegant techniques were developed and such deep
mathematics results were used in deriving the lower bounds. It is not clear
how these techniques can be generalized to deriving lower bounds for general
geometric problems. Fortunately, we do not have to do this very often. For
some geometric problems, the lower bounds can be derived by “reducing”
the problems to some other problems for which the lower bounds are known.

Let us first review the concept of problem reductions. We say that a
problem P can be reduced to a problem P’ in time O(t(n)), expressed as
P ocy) P’ if there is an algorithm 7 solving the problem P as follows:

1. for an instance x of size n for the problem P, convert x in time O(t(n))
into an instance 2’ to the problem P’;

2. call a subroutine to solve the problem P’ on instance z’;

3. convert in time O(t(n)) the solution to the problem P’ on instance z’
into a solution to the problem P on instance x.

We have seen in Chapter 7 that the technique of reductions is very useful
in designing efficient algorithms for geometric problems. In this section, we
will study how to use this technique to derive lower bounds for geometric
problems. The following theorem plays an important role in our discussion.

150 LowER BOUNDS

Theorem 8.4.1 Assuming Q o, Q'. If solving the problem Q takes time
Q(nlogn), then solving the problem Q' also takes time Q(nlogn).

PROOF. Suppose the contrary that the problem @’ can be solved in time
T(n) = o(nlogn). Note that for any constant ¢ > 0, we have (cn)log(cn) =
O(nlogn). Therefore, T(cn) = o((cn)log(O(cn))) = o(nlogn), i.e.,
T(O(n)) = o(nlogn). By Lemma 7.0.1, then the problem @ can be solved
in time O(n+T(0(n))) = o(nlogn). But this would contradict the assump-
tion that the problem @ takes time Q(nlogn). This contraction shows that
the problem @’ takes time Q(nlogn). O

In other words, Theorem 8.4.1 claims that under the condition Q o, Q’,
the lower bound Q(nlogn) on the time complexity of the problem @ gives
a lower bound Q(nlogn) on the time complexity of the problem ¢’.

We first use Theorem 8.4.1 to derive a lower bounds for the CONVEX-
HuLL problem.

Theorem 8.4.2 Any bounded-order algebraic decision tree that constructs
the convex hull for a set of points in the plane takes time Q(nlogn) on an
iput of n points in the plane.

ProOOF. By Theorem 8.3.5, any bounded-order algebraic decision tree that
solves the problem EXTREME-POINTS runs in time Q(nlogn). According to
Theorem 8.4.1, it will suffice to prove the theorem by showing

EXTREME-POINTS o,, CONVEX-HULL.
We give this reduction by the following algorithm.

Algorithm Reduction-1

\\ Reduce Extreme-Points to Convex-Hull.

1. on an instance S of Extreme-Points, where S is a set of n
points in the plane, pass S to Convex-Hull;

2. the solution of Convex-Hull to the set S is the convex hull
CH(S) of S. Pass CH(S) back to Extreme-Points;

3. if CH(S) has n hull vertices, the answer of Extreme-Points
to the instance S is YES; Otherwise, the answer is NO.

Since both Step 1 and Step 3 take at most time O(n), the above algorithm
is a linear time reduction of the problem EXTREME-POINTS to the problem
ConvEx-HurL. [

LowER BOUNDS BY REDUCTION 151

Thus, constructing the convex hulls of a set of n points in the plane
takes time Q(nlogmn). This result implies that many algorithms we have
discussed before for constructions of convex hulls, including Graham Scan,
MergeHull, and Kirkpatrick-Seidel, are optimal.

As we have discussed in the last chapter, the problem CONVEX-HULL
can be reduced to the problem SORTING in time O(n). By Theorem 8.4.1
and Theorem 8.4.2, we obtain

Theorem 8.4.3 Any bounded-order algebraic decision tree sorting n real
numbers runs in time Q(nlogn).

Theorem 8.4.3 is a result stronger than the one we got in Algorithm
Analysis. In Algorithm Analysis, it is proved that a linear-decision tree
model that sorts runs in time 2(nlogn). On the other hand, Theorem 8.4.3
claims that even the computation model is allowed to do multiplication, it
still needs Q(nlogn) time to sort.

We have seen many proximity problems solvable in time O(nlogn). Now
we prove that these algorithms for the problems are optimal.

We start with two problems whose lower bounds are easily obtained from
the problem SORTING: EUCLIDEAN MINIMUM-SPANNING-TREE (Euclidean-
MST) and TRIANGULATION. For this, we first prove a simple lemma.

Lemma 8.4.4 Let S be a set of n real numbers x1, xo, -+, Tn. If S is
given in such a way that for each 1 < k < n, the number xj, is companied
by an index i, such that z;, is the smallest number in S that is larger than
xi. Then the set S can be sorted in linear time.

PROOF. To sort the set S, we first scan the set S to find the minimum
number xj, in S. Since xj, is companied by an index k2 = i, such that zy,
is the smallest number in S that is larger than xy,, z3, must be the second
smallest number in S. Moreover, since we know the index ko, we can get
xr, and put it immediately after xj, in constant time. In general, suppose
we have obtained xj, that is the i-th smallest number in S. Then since xy,
is companied by an index k;1 = iy, such that zy, , is the smallest number
in S that is larger than xy,, xy, , is the (i + 1)-st smallest number in S,
and we can get ., and put it immediately after xy, in constant time. It
is clear that after n — 1 such iterations, we reach the largest number in S
and obtain a sorted list of the numbers in S. Since each iteration takes only
constant time, we conclude that the set S is sorted in linear time. []

We now consider the problem EUCLIDEAN-MST.

152 LowER BOUNDS

Lemma 8.4.5 SORTING can be reduced to EUCLIDEAN-MST in linear time.

PROOF. Given a set S of n real numbers x1, x3, - - -, T, which is an instance
of the problem SORTING, we construct an instance S’ of the EUCLIDEAN-
MST problem that is the set of n points in the plane:

(mlv 0)7 (:BQv 0)7 T ($7L7 O)

Moreover, for each 1 < ¢ < n, we attach an index i to the point (z;,0). It
is easy to see that the (unique) solution to the EUCLIDEAN-MST problem
on the instance S’ is a chain T of n — 1 segments in the plane, such that
a segment (x;,0)(x;,0) is in 7" if and only if the number z; is the smallest
number in S that is larger than z;.

Pass the chain T back to SORTING. For each segment (x;,0)(z;,0) in T,
construct a pair (z;,j) (remember that the index j is attached to the point
(x,0)). Using these pairs, by Lemma 8.4.4, we can construct the sorted list
of S in linear time. This proves SORTING o,, EUCLIDEAN-MST. []

This Lemma, together with Theorem 8.4.3 and Theorem 8.4.1 gives the
following theorem.

Theorem 8.4.6 Any bounded-order algebraic decision tree that constructs
the Euclidean minimum spanning tree for a set of n points in the plane runs
in time Q(nlogn).

Therefore, the algorithm presented in Section 7.4 that constructs the
Euclidean minimum spanning tree for sets of points in the plane is optimal.
Now we consider the problem TRIANGULATION.

Lemma 8.4.7 SORTING can be reduced to TRIANGULATION in linear time.

PrROOF. The proof is similar to that of Lemma 8.4.5. Given a set S of n
real numbers z1, 22, ---, Tpn, We construct a set S’ of n + 1 points in the
plane

q = (r1,2),p1 = (21,0),p2 = (22,0),- -+, pp = (2, 0).

It is easy to see that the set S’ has a unique triangulation that consists of
the n segments gp; for 1 < i < n, plus the n — 1 segments p;p; where the
number x; is the smallest number in S that is larger than ;.

Now using the similar argument as the one we presented in the proof of
Lemma 8.4.5, we conclude that we can construct the sorted list of S from
the triangulation of S’ in linear time. []

LowER BOUNDS BY REDUCTION 153

Theorem 8.4.8 Any bounded-order algebraic decision tree that constructs
the triangulation for a set of n points in the plane runs in time Q(nlogn).

Thus the problem TRIANGULATION also has an optimal algorithm, which
was presented in Section 7.3.

A simple generalization of the problem TRIANGULATION is the problem
CONSTRAINED-TRIANGULATION, as introduced in Section 4.4, which on a
given PSLG G, constructs a triangulation of the vertices of G that uses all
edges in G. A lower bound for the CONSTRAINED-TRIANGULATION can be
obtained from the lower bound of TRIANGULATION.

Theorem 8.4.9 Any bounded-order algebraic decision tree solving the prob-
lem CONSTRAINED-TRIANGULATION runs in time (nlogn).

PRrROOF. It is easy to prove that
TRIANGULATION o<;, CONSTRAINED-TRIANGULATION.

In fact, every instance of the problem TRIANGULATION, which is a set S of n
points in the plane, is an instance G = (5, ¢) of the problem CONSTRAINED-
TRIANGULATION, in which the PSLG G has an empty set of edges.

Since the problem TRIANGULATION has a lower bound Q(nlogn), by
Theorem 8.4.1, the problem CONSTRAINED-TRIANGULATION has a lower
bound Q(nlogn). O

One may observe that the reductions we have used in Lemma 8.4.5 and
Lemma 8.4.7 reduce the instances of SORTING to “degenerated” instances
of the geometric problems EUCLIDEAN-MST and TRIANGULATION, respec-
tively, in which we allow three or more points to be co-linear, while in our
developments of algorithms for the problems, we assumed non-degenerated
instances. The degeneration can in fact be avoided if we use higher-degree
curves instead of straight lines. For example, in the reduction from SORTING
to EUCLIDEAN-MST, instead of mapping the real numbers in the instance
S ={x1,22,...,2,} of SORTING to the points in the z-axis, we can map the
numbers to the parabola y = z2 by z; — (:UZ,:L"ZQ) (we can assume that all
numbers in S are positive — otherwise, we add a sufficiently large constant to
every number in S). It is not difficult to see that for this set of constructed
points, no three points are co-linear and no four points are co-circular, i.e.,
the constructed instances are non-degenerated for the geometric problem.
On the other hand, it is also easy to verify that the Euclidean minimum

154 LowER BOUNDS

spanning tree of the point set is a polygonal path from which a sorted list
of the numbers in S can be obtained in linear time.

To derive lower bounds for the problems CLOSEST-PAIR and ALL-
NEAREST-NEIGHBORS, we use the lower bound for the problem ELEMENT-
UNIQUENESS, as derived in the last section.

Theorem 8.4.10 Any bounded-order algebraic decision tree finding the
closest pair for a set of n points in the plane runs in time Q(nlogn).

PROOF. We prove ELEMENT-UNIQUENESS ,, CLOSEST-PAIR.
For an instance S = {z1,x2,...,2z,} of ELEMENT-UNIQUENESS, which
is a set of n real numbers, we construct an instance for CLOSEST-PAIR:

(5171,0), (‘732’0)7 Tty (xnvo),

which is a set S’ of n points in the plane. Clearly, all elements of S are
distinct if and only if the closest pair in S” does not consist of two identical
points. So the problem ELEMENT-UNIQUENESS is reducible to the problem
CLOSEST-PAIR in linear time. Now the theorem follows from Theorem 8.3.1
and Theorem 8.4.1. [

Since it is straightforward to verify that
CLOSEST-PAIR o¢;;, ALL-NEAREST-NEIGHBORS,
by Theorem 8.4.10 and Theorem 8.4.1, we obtain the following theorem.

Theorem 8.4.11 Any bounded-order algebraic decision tree finding the
nearest neighbor for each point of a set of n points in the plane runs in
time Q(nlogn).

Thus, the algorithms we derived in Section 7.2 for the problems
CLOSEST-PAIR and ALL-NEAREST-NEIGHBORS are optimal.

To discuss the lower bound on the time complexity of the problem
MAXIMUM-EMPTY-CIRCLE, we use the (nlogn) lower bound for the prob-
lem UNIFORM-GAP derived in the last section.

Theorem 8.4.12 Any bounded-order algebraic decision tree that constructs
a mazimum empty circle for a set of n planar points runs in time Q(nlogn).

Proor. We show that

UNIFORM-GAP o, MAXIMUM-EMPTY-CIRCLE.

LowER BOUNDS BY REDUCTION 155

On a set S = {z1,22, -+ ,z,} of n real numbers, which is an instance
of the problem UNIFORM-GAP, if all numbers in S are the same (this can
be easily verified in linear time), then we can directly conclude that S is a
No-instance of UNIFORM-GAP. Otherwise, we let g = (Zmax — Tmin)/(n —
1), where Tmax and zpmiy are the largest and the smallest numbers in S,
respectively and construct a set S” of n points in the plane

S = {(z1,0), (x2,0),--- , (2,,0)},

which is an instance of the problem MAXIMUM-EMPTY-CIRCLE. Note that
the number g and the point set S’ can be constructed from the given number
set S in linear time.

Note that the diameter d of the maximum empty circle of S, which is
part of the solution of MAXIMUM-EMPTY-CIRCLE to the instance S, is the
largest difference between two consecutive numbers in a sorted sequence of
the set S. It is easy to see that S is a YES-instance of UNIFORM-GAP if and
only if d = g. Therefore, given the diameter d of the maximum empty circle
of the point set S’, a correct solution of UNIFORM-GAP to the instance S
can be obtained directly. This proves that UNIFORM-GAP is reducible to
MAXIMUM-EMPTY-CIRCLE in linear time.

By Theorems 8.3.2 and 8.4.1, we derive the lower bound 2(nlogn) for
the time complexity of the problem MAXIMUM-EMPTY-CIRCLE. [

Therefore, the algorithm in Section 7.5 for finding the maximum empty
circle given a set of points in the plane is optimal.

We have presented an O(nlogn) time algorithm for the FARTHEST-PAIR
problem in Section 4.3. We now prove that this algorithm is optimal by
showing a lower bound on the time complexity of the problem. For this, we
make use of the Q(nlogn) lower bound for the problem SET-DISJOINTNESS.

Theorem 8.4.13 Any bounded-order algebraic decision tree that solves the
problem FARTHEST-PAIR runs in time Q(nlogn).

PROOF. We prove SET-DISJOINTNESS o<, FARTHEST-PAIR.

Given an instance I = (X,Y") of the problem SET-DISJOINTNESS, where
X and Y are sets of n real numbers, we transform I into an instance of
FARTHEST-PAIR as follows. Without loss of generality, suppose that all
numbers in X and Y are positive (otherwise, we scan the sets X and Y to
find the smallest number z in X UY, then add the number —z + 1 to each
number in X and in Y'). Now find the largest number zp,ax in XUY. Convert
each number z; in the set X into a point on the unit circle in the plane that

156 LowER BOUNDS

has a polar angle x;7/zmax, and convert each number y; in the set Y into
a point on the unit circle in the plane that has a polar angle y;7/zmax + 7.
Intuitively, we transform all numbers in the set X into points in the first
and second quadrants of the unit circle in the plane, while transform all
numbers in the set Y into points in the third and fourth quadrants of the
unit circle. Such a transformation gives a set S of 2n points in the plane. It
is easy to see that the diameter of S is 2 if and only if the intersection of X
and Y is not empty. This proves that the problem SET-DISJOINTNESS can
be reduced to the problem FARTHEST-PAIR in linear time.

By Theorem 8.3.3, the problem SET-DISJOINTNESS has a lower bound
Q(nlogn). By Theorem 8.4.1, the problem FARTHEST-PAIR also has a lower
bound Q(nlogn) on its time complexity. [J

8.5 A remark on our model

We have successfully developed lower bounds for a number of geometric
problems on the model of algebraic decision trees. These lower bound re-
sults show that the algorithms we developed for these problems are optimal,
giving very satisfactory conclusions to the computational complexity for
these problems.

In this section, we give an observation that is somehow surprising, show-
ing that some of the lower bounds we developed can be broken. Consider
the following algorithm for the problem UNIFORM-GAP: 2.

Algorithm Dubbs-III

Input: A set S = {x_1, x_2, ..., x_n} of n real numbers.
Question: does S have a uniform gap that is larger than 07

\\ A below is an array A[l..n], which is initialized to empty

1. find the min number x_min and the max number x_max in S;

2. if (x_min = x_max) return("no");

3. g = (x_max - x_min)/(n-1);

4. for i =1 to n do

4.1 k= (x_i - x_min)/g;

4.2 if (k is not an integer or A[k+1l] is not empty)
return("no");

4.3 else A[k+1] = x_i;

5. return("yes").

2The author was informed of this algorithm by Roger B. Dubbs III.

A REMARK 157

This algorithm obviously runs in linear time. To see the correctness,
first observe that if i = Tmax In step 2, then all numbers in S are the
same and the uniform gap is 0 so S is a NO-instance and step 2 returns
correctly. Otherwise, if a number z; is placed in A[k], then the value of
x; must be zpyin + g(k — 1). Moreover, no array element of A holds more
than one numbers in S. As a result, if the algorithm returns at step 5, then
every array element of A holds exactly one number from the set S, and these
numbers are Tmin +¢g-(k—1), for k =1,2,--- ,n. Therefore, the set S must
be a YES-instance of the problem UNIFORM-GAP.

For the other direction, if the algorithm returns at step 4.2, then either
S is not uniformly distributed (otherwise all values (z; — Zin)/g should be
integral) or the set S' contains two identical numbers. In either case, the set
S cannot be a YES-instance of the problem UNIFORM-GAP.

This example brings up an interesting point: there are certain very com-
mon operations not included in the algebraic decision tree model that allow
to do things that are not possible in the algebraic decision tree model. In
the algorithm Dubbs-III, such an operation is the testing of integral for
the number £ in step 4.2. There are also other such operations, including
the functions that take the floor or the ceiling of a real number. Other
problems that have an Q(nlogn) lower bound but can be solved in linear
time with certain "non-algebraic” operations were also discovered. These
examples imply that these non-algebraic operations, such as the floor and
ceiling functions and the integral testing cannot be performed in constant
time in the algebraic decision tree model.

158 LowER BOUNDS

