Chapter 7

Reductions

A problem @ is reducible to the problem Q2 in time O(t(n)), or equivalently,
the problem @ is t(n)-time reducible to @2, written as

Q1 X¢(n) Q2s

if there are a forward algorithm A; and a backward algorithm Ay such that

1. For an instance x; of the problem @1, the forward algorithm Ay con-
verts 1 in time O(¢(|xz1])) to an instance x2 of the problem Qq;

2. On a solution yo to the instance xs of (Q2, the backward algorithm Ap
converts ¥, in time O(t(]z1])) to a solution y; to the instance x; of Q;.

Note that in the above definition, there is no assumption on how difficult
the problem Q2 is. Moreover, the running time of the backward algorithm
Ay is measured in terms of the size of the instance x; of the problem Q.
The following theorem shows that if the problem ()5 can be solved efficiently,
then the problem Q1 can also be solved efficiently.

Lemma 7.0.1 Suppose that a problem Q1 is t(n)-time reducible to a prob-
lem Q2, i.e., Q1 o) Q2, and thal the problem Q2 can be solved in time
O(T'(n)). Then the problem Q1 can be solved in time O(t(n) +T(0O(t(n)))).

PROOF. Suppose that a t(n)-time reduction from the problem @; to the
problem @7 is given by a forward algorithm A; and a backward algorithm
Ap, and that an algorithm As solves the problem @2 in time O(T'(n)). The
problem @7 can be solved as follows, on an instance z1 of Q1:
(1) use the forward algorithm Ay to convert x1 to an intance xo of Qo;
(2) use the algorithm Ay on x9 to construct a solution y2 to xe; and

111

112 REDUCTIONS

(3) use the backward algorithm A to convert yo into a solution y; to
the instance x1 of Q1.

Let n = |x1|. By the definition, step (1) and step (3) of the above algorithm
take time O(¢(n)). Since step (1) takes time O(t(n)), the size of the instance
x2 of Q2 is bounded by O(t(n)). Therefore, in step (2) of the algorithm, the
algorithm Ay of time complexity O(T'(m)) on inputs of size m takes time
O(T(O(t(n)))) on the input x2. This concludes that the running time of the
above algorithm that solves the problem ()1 is bounded by

O(t(n)) +O(T(0(t(n)))) = O(t(n) +T(O(t(n))))- o

The reduction technique plays an important role in the study of complex-
ity of geometric problems, both for deriving lower bounds and for designing
efficient algorithms. In this chapter, we study how to use the technique to
design efficient geometric algorithms. In the next chapter, we will explain
how we use the technique to derive lower bounds for geometric problems.

We close this introductory section by the following corollary, which will
be heavily used in our discussion.

Corollary 7.0.2 Suppose that problem Q1 is linear-time reducible to prob-
lem Q2, i.e., Q1 o, Q2. If problem Q2 can be solved in time O(T(n)),
where the function T'(n) satisfies T'(n) = Q(n) and T(O(n)) = O(T'(n)),
then problem Q1 can also be solved in time O(T(n)).

PROOF. As shown in Lemma 7.0.1, the problem (); can be solved by an
algorithm A; in time O(n 4+ T(O(n))). By our assumption, T(O(n)) =
O(T(n)). Moreover, T'(n) = Q(n). Therefore, the time complexity of the
algorithm A; under these conditions is bounded by

O(n + O(T(n))) = O(T(n)). O

Notice that most of the complex1ty functions 7'(n) we use in this book,
such as n, nlogn, n¥, and n¥log"n, where k and h are fixed constants,
satisfy the conditions T() =Q(n) and T(O(n)) = O(T(n)).

7.1 Convex hull and sorting

Consider the algorithm Modified-Graham-Scan (subsection 4.2.2) for con-
structing the convex hull of a set S of points in the plane. If the given set
S of n points in the plane is sorted by x-coordinates, then the algorithm

CONVEX HULL AND SORTING 113

Modified-Graham-Scan needs only linear time to construct the convex hull
CH(S) for S. In fact, it is not hard to see that

CONVEX-HULL o, SORTING

by the following argument. Given an instance of CONVEX-HULL, which is a
set S of n points in the plane, we can take S as an instance of SORTING if we
let the z-coordinate of a point p in .S be the “key” of the point p. Therefore,
we can simply pass the instance S of the problem CONVEX-HULL to the
problem SORTING as an instance S. Now the solution of SORTING on the
instance S is a list of the points in S that is sorted by the x-coordinates. The
Modified-Graham-Scan algorithm shows that with this solution to SORT-
ING, the convex hull CH(S) of the set .S, which is the solution to the instance
S of CoONVEX-HULL, can be constructed in time O(n).

It is interesting that we can prove that the problem SORTING can also
be reduced to the problem CONVEX-HULL in linear time.

Theorem 7.1.1 SORTING ,;,, CONVEX-HULL.

PrRoOOF. Given a set L = (z1,z2,...,x,) of n real numbers, which is an
instance of the problem SORTING, we can suppose that all numbers in the
set L are non-negative — otherwise, we first scan the set L and find the
smallest number x in L, then add —z to each number in L to produce a new
set L' of non-negative numbers. From a sorted list of the new set L/, we can
easily get a sorted list of the original set L.

We first scan the set L to find the largest number xy,y in L. Then for
each number z; in L, we convert z; into a point p; in the plane such that the
polar angle of p; is 27x;/xmax and the distance between p; and the origin
O is 1 (so the point p; is on the unit circle). Let S be the set of these n
points p1, p2, ..., pn in the plane. The set S is an instance of the problem
ConvEX-HUuLL, which can obviously be obtained from the set L in time
O(n), since all we do is to scan the set L to find the largest number Zyax,
and for each number z; in L, in constant time to construct the point p;.

Since the unit circle is convex, the n points in the set S must be all
on the convex hull CH(S). Therefore, the solution CH(S) to the instance
S of the problem CONVEX-HULL is a list Hr, = (pi,,Diy,---,Pi,) of the
points in S, given in the order when we traverse the convex hull CH(S) in
counterclockwise ordering. Scanning the points in the list Hy for CH(S),
we can find the point in S that has the minimum polar angle (by circularly
rotating the list Hy, we can assume without loss of generality that point
pi, has the minimum polar angle). Thus, the list Hy, is given in increasing

114 REDUCTIONS

order of the polar angles of the points in S. Since the polar angle of the
point p; in the set S is 27x; /Tmax, where z; is the corresponding number in
the list L, the ordered list L' = (x;,,x4,,...,2;,) obtained by multiplying
the polar angle of each point in the list Hy by zmax/(27) gives the sorted
list of the original list L, which is the solution to the instance L for the
problem SORTING. Finally, it is easy to verify that the set S of the points,
which is an instance of the problem CONVEX-HULL, can be constructed in
time O(n) from the set L of numbers, which is an instance of the problem
SORTING, and that the sorted list L', which is the solution to the set L, can
be constructed in time O(n) from the list Hy,, which represents the convex
hull CH(S) that is the solution to S. In conclusion, this shows that the
problem SORTING is n-time reducible to the problem ConvEX-HuLL. [

Let Q1 and @2 be two problems and ¢(n) be a function. If we have both

Q1 X¢(n) Q2 and Q2 X4(n) @1,

then we say that the problems @1 and Q2 are equally complez up to a t(n)-
time reduction, written as Q1 =(,) Q2.

For two problems that are equally complex up to a linear time re-
duction, if one can be solved in time O(T'(n)), where T'(n) = Q(n) and
T(O(n)) = O(T(n), then by Corollary 7.0.2, the other can also be solved in
time O(T'(n)).

By the above discussions, we have proved that SORTING =,, CONVEX-
HuLL. In fact, construction of convex hulls for sets of points in the plane is
a generalization of sorting. In sorting n numbers, we are asked to find the
ordering of a set of points in the real line, while in constructing a convex hull,
we are asked to find the ordering of polar angles, relative to an interior point
of the convex hull, of the “extreme points”. The difference is that in sorting,
every given number appears in the final sorted list, while in constructing a
convex hull, we also have to make the decision on whether a given point is a
non-extreme point, and if yes, exclude it from the final output list. On the
other hand, as we have seen, up to an linear-time reduction, sorting is not
easier than constructing convex hulls for points in the plane.

7.2 Closest pair and all nearest neighbor

According to the definition of the Voronoi diagram (a partition of the plane
into regions such that each region is the locus of points closer to a point
of the set S than to any other point of S), it is not surprising that the

CLOSEST-PAIR 115

problems CLOSEST-PAIR and ALL-NEAREST-NEIGHBORS can be solved ef-
ficiently through the Voronoi diagram. Recall that the problem CLOSEST-
PAIR is to find the closest pair in a given set of n points in the plane, while
the problem ALL-NEAREST-NEIGHBORS is that for each point in a given
set S of n points in the plane, find the nearest neighbor in S. Finally, let
VORONOI-DIAGRAM denote the problem of constructing the Voronoi dia-
gram for a given set of n points in the plane.

Theorem 7.2.1 ALL-NEAREST-NEIGHBORS o¢,, VORONOI-DIAGRAM.

PROOF. Suppose that a set S of n points in the plane is an input instance to
the problem ALL-NEAREST-NEIGHBORS, we pass the input S directly as an
instance to the VORONOI-DIAGRAM problem. The solution to the instance
S of the problem VORONOI-DIAGRAM is the Voronoi diagram Vor(.S) of the
set S. By Lemma 5.2.2, for each point p; in the set S, the nearest neighbor of
p; in S defines a non-degenerate Voronoi edge for the Voronoi polygon V; for
p;- Therefore, by traversing the boundary of the Voronoi polygon V; for the
point p;, we can find the nearest neighbor in the set S for the point p;. Doing
this for all points in S gives the solution to the instance S of the problem
ALL-NEAREST-NEIGHBORS. Given the Voronoi diagram Vor(.S) of the set
S, each Voronoi polygon can be traversed by the algorithm Trace-Region
given in section 2.4 in time proportional to the number of edges on the
boundary of the polygon. Since each Voronoi edge is on the boundary of
exactly two Voronoi polygons, the sum of the total numbers of boundary
edges over all Voronoi polygons in Vor(S) equals twice of the number of edges
in the Voronoi diagram Vor(S). As a result, we conclude that traversing all
Voronoi polygons of the Voronoi diagram Vor(S), thus finding the nearest
neighbor for each point in the set S when the Voronoi diagram Vor(S) is
given, takes time proportional to the number of edges of Vor(S), which is
of order O(n) since the Voronoi diagram is a planar graph. This proves the
reduction ALL-NEAREST-NEIGHBORS o¢;, VORONOI-DIAGRAM. []

Since the Voronoi diagram of a set of n points can be constructed in time
O(nlogn) (see Theorem 5.3.7), by Corollary 7.0.2, we obtain

Corollary 7.2.2 The problem ALL-NEAREST-NEIGHBORS can be solved in
time O(nlogn).

It is easy to see that given a set S of n points in the plane, the solution
to the instance S of the problem CLOSEST-PAIR can be obtained from the

116 REDUCTIONS

solution to the instance S of the problem ALL-NEAREST-NEIGHBORS in
linear time, by simply computing the distance between each point and its
nearest neighbor, then taking the point that has the shortest distance to its
nearest neighbor. This gives

CLOSEST-PAIR o¢,, ALL-NEAREST-NEIGHBORS.

By Corollary 7.2.2, the problem ALL-NEAREST-NEIGHBORS can be solved
in time O(nlogn). Therefore by Corollary 7.0.2, we have

Corollary 7.2.3 The problem CLOSEST-PAIR is sovable in time O(nlogn).

7.3 Triangulation

Let Vor(S) be the Voronoi diagram for a set S of n points in the plane. We
draw a segment [p;, p;| for each pair of points p; and p; in S if they define
a Voronoi edge in Vor(S). Let D(S) be the collection of these segments,
which is called the straight-line dual of the Voronoi diagram Vor(S5).

We prove that the straight-line dual D(SS) of the Voronoi diagram Vor(.S)
is a triangulation of the point set S, i.e., the straight-line dual D(S) parti-
tions the convex hull CH(S) of the point set S into triangles such that

(1) no two of the triangles overlap in the interior, and

(2) every point in the convex hull CH(.S) (more precisely, every point
in the area bounded by the convex hull CH(SS)) must be contained
in at least one of the triangles.

In the Voronoi diagram Vor(S) of the point set S, under the assumption
that no four points in the set .S are co-circular, by Lemma 5.2.1, each Voronoi
vertex v is incident to exactly three Voronoi edges e;, eo, and e3, and to
exactly three Voronoi polygons Vi, Vs, and V3, which are for three points
p1, p2, and ps, respectively, in the set S. Each of the edges e, ez, and es
is defined by a pair of the points pi1, p2, and p3. Therefore, the segments
[p1,p2], [P2, 3], and [ps,p1] are all in the straight-line dual D(S) of Vor(S)
and form a triangle in D(S). Thus, each Voronoi vertex v in Vor(S) is
associated with a triangle Apipaps in the straight-line dual D(S). Denote
by A(v) the triangle Apipops. On the other hand, since a Voronoi edge
[v,v] in Vor(S) is incident on two Voronoi vertices v and v/, the segment in
the straight-line dual D(S) corresponding to the edge [v,] is a boundary
edge of the two triangles A(v) and A(v') in D(S).

TRIANGULATION 117

q
q

Figure 7.1: Two circumcircles intersect at ¢ and ¢’

Lemma 7.3.1 No two triangles A(v) and A(v') in D(S) overlap in the
interior, where v and v' are two Voronoi vertices in Vor(S).

PrROOF. Let A(v) and A(v') be two arbitrary triangles in the straight-
line dual D(S) of the Voronoi diagram Vor(S). Let C(v) and C(v') be
the circumcircles of the triangles A(v) and A(v'), respectively. Thus, the
triangle A(v) is entirely contained in C'(v) while the triangle A(v') is entirely
contained in C(v'). If the circumcircles C'(v) and C(v") do not overlap in
the interior, then of course the triangles A(v) and A(v') do not overlap
in the interior. Thus, we assume that C(v) and C(v') do overlap in the
interior. Note that (under the assumption of no four co-circular points in
S) each of the circumcircles C'(v) and C(v’) contains exactly three points
in the point set S on its boundary, and by Lemma 5.2.3, no point of S is
contained in the interior of C'(v) or C(v"). Moreover, C'(v) and C(v") cannot
be coincide — otherwise at least four points in the set S would be co-circular.
Also, no one of the circles C(v) and C(v') can be entirely contained in the
other — otherwise some point of the set S would be contained in the interior
of C'(v) or C(v'), contradicting to Lemma 5.2.3. So the boundaries of the
circumcircles C(v) and C(v') must intersect at exactly two points ¢ and ¢’
See Figure 7.1.

The two points ¢ and ¢’ partition the circle C(v) into two disjoint curves,
one is entirely contained in the circle C(v') and the other is completely
outside the circle C'(v'). No vertex of the triangle /A (v) can be on the curve
of C(v) that is entirely contained in the circle C'(v') — otherwise the vertex of
A(v), which is a point in the point set S, would be in the interior of the circle
C(v'), contradicting Lemma 5.2.3. Thus the three vertices of A(v) must be
on the curve of C'(v) that is outside C'(v'). Similarly, the three vertices of
the triangle A(v’) are on the curve of C(v') that is outside C(v). As a

118 REDUCTIONS

Figure 7.2: A point ¢ outside all triangles

consequence, the three vertices of the triangle A(v) and the three vertices of
the triangle A(v') must be separated by the segment [q,¢'], so the triangles
A(v) and A(v') cannot overlap in the interior. [

Every segment in the straight-line dual D(S) is an edge for some triangles
in D(S). Moreover, by Lemma 5.2.3, no point p in .S can be an interior point
in a segment in D(S) (otherwise, the point p would be in the interior of the
circumcircle C(v) for some Voronoi vertex v). Thus, Lemma 7.3.1 implies
that the segments in D(S) can only intersect at their ends. Therefore,
the straight-line dual D(S) of Vor(S) is a PSLG. To show that D(S) is a
triangulation of the point set S, we also need to prove the following lemma.

Lemma 7.3.2 Fvery point in the convex hull CH(S) is contained in a tri-
angle A(v) for some Voronoi vertex v in the Voronoi diagram Vor(S).

PRrROOF. Suppose that the lemma is not true and that some point ¢ in the
convex hull CH(S) is not contained in any such triangles. Then we can find
a triangle A(v), where v is a Voronoi vertex of Vor(.S), and an interior point
¢’ in the triangle A(v) such that the segment [g, ¢'] intersects no triangles in
D(S) except the triangle A(v). Moreover, we can suppose that the segment
[¢,¢] intersects the boundary of the triangle A(v) at a point that is not a
vertex of A(v). This condition can always be satisfied since we can move
the point ¢’, which is an interior point in A(v), slightly in the triangle A(v).

Therefore, we can suppose that the three vertices of the triangle A(v)
are pi1, p2, and p3, which are points in the set S, that the segment [q, ¢
intersects the edge [p1, p2] of the triangle A(v) at an internal point ¢”, and
that no point on the segment [gq,¢”] (excluding the point ¢”) is contained
in any triangle A(u) for a Voronoi vertex u. See Figure 7.2. Under these

TRIANGULATION 119

conditions, the point ps and the point ¢ must be on different sides of the
segment [p1,pe2]. Since both points ¢ and ps are contained in the convex
hull CH(S), the segment [p1, p2] cannot be a boundary edge of CH(S). Let
e = [v,v] be the Voronoi edge defined by the points p; and p2 in S (note
that the vertex v must be an end-point of e), then by Lemma 5.2.4, e is
a finite edge since the points p; and p are not consecutive hull vertices
on CH(S). So v’ is a finite Voronoi vertex in Vor(S), and defines a triangle
A(v') in the straight-line dual D(S). By the definition of A(v'), two vertices
of A(v') must be the points p; and po, and the other vertex py of A(v)
must be different from the point p3 since v # v'. By Lemma 7.3.1, the two
triangles A(v) and A(v") do not overlap in the interior, so the two points
ps and py must be on different sides of the segment [p1ps] (see Figure 7.2).
Consequently, however, some points on the segment [q,¢”] that are close
enough to the point ¢” would have to be contained in the interior of the
triangle A(v"). This contradicts our assumption that no points on [q, ¢”|
(excluding ¢”) is contained in any triangles in D(S). This contradiction
shows that ¢ must belong to a triangle A(w) in D(S) for some Voronoi
vertex w in Vor(sS). [J

By Lemma 7.3.1 and Lemma 7.3.2, we conclude immediately that the
straight-line dual D(S) of the Voronoi diagram Vor(S) is a triangulation of
the point set S. This triangulation of the point set S is called the Delaunay
triangulation of the set S.

Define TRIANGULATION as the problem of constructing a triangulation
for a given point set S in the plane such that all points in the convex hull
CH(S) of S are contained in the triangles, and let VORONOI-DIAGRAM be
the problem of constructing the Voronoi diagram Vor(.S) for a given point
set S in the plane. Then we have

Theorem 7.3.3 TRIANGULATION &, VORONOI-DIAGRAM.

PrOOF. Let S be a set of n points in the plane, which is an instance of
the problem TRIANGULATION. We simply pass S as an instance to the
problem VORONOI-DIAGRAM. The solution to the instance S of the prob-
lem VORONOI-DIAGRAM is the Voronoi diagram Vor(S) of the point set S.
From the Voronoi diagram Vor(S), given in a doubly connected edge list
(DCEL), we construct the Delaunay triangulation D(S) of S in time O(n)
by traversing all the Voronoi vertices of Vor(S). Note that by traversing
the edges incident to a Voronoi vertex v, we can easily construct the trian-
gle A(v) in D(S). Once all the triangles in D(S) are constructed, we can

120 REDUCTIONS

easily construct the doubly connected edge list for D(S) in time O(n). Sum-
marizing the discussion, we conclude that the TRIANGULATION problem is
linear-time reducible to the VORONOI-DIAGRAM problem. [

By Theorem 5.3.7, the Voronoi diagram of a set of n points in the plane
can be constructed in time O(nlogn). By Corollary 7.0.2, we have

Corollary 7.3.4 The problem TRIANGULATION can be solved in time
O(nlogn). In particular, the Delaunay triangulation D(S) of a set S of
n points in the plane can be constructed in time O(nlogn).

7.4 Euclidean minimum spanning tree

Consider the following problem: given a set S of n points in the plane,
interconnect all the points by straight line segments so that the sum of the
lengths of the segments is minimized. The problem has obvious applications
in computer networking where we want to interconnect all the computers at
the minimum cost. In fact, the problem also has wide applications in many
other areas, such as bioinformatics and industrial managements.

It is easy to see that the resulting connected PSLG after the above
interconnection must be a tree. In fact, if the resulting PSLG were not a tree,
then we would be able to find a cycle in the PSLG. Deleting an edge from
the cycle would still keep the PSLG connected. But this would contradict
the assumption that the resulting connected PSLG has the minimum sum
of the lengths of its segments over all such connected PSLGs. This tree is
called a Euclidean minimum spanning tree (EMST) of the set S. In general,
the Euclidean minimum spanning tree of a set is not unique.

The problem of finding a Euclidean minimum spanning tree for a set of
points in the plane is closely related to the following problem of finding a
minimum weight spanning tree in a graph: given a weighted graph G, find a
spanning tree of G with the minimum total weight. In fact, the problem of
finding a Euclidean minimum spanning tree can be reduced to the problem
of finding a minimum weight spanning tree in a weighted graph, as follows.

Let S be a set of n points in the plane. To construct a Euclidean mini-
mum spanning tree of S, we can regard S as a weighted complete graph Gg
of n vertices, which are the n points in the set S, such that the weight of an
edge e = [p,p'] in Gg is the Euclidean distance between the points p and p'.
Therefore, a Euclidean minimum spanning tree of the set S is a minimum
weighted spanning tree of the graph Gg, and vice versa. There are a few

MINIMUM SPANNING TREE 121

efficient algorithms for constructing the minimum weighted spanning tree
for weighted graphs. For example, Kruskal’s algorithm [16] constructs the
minimum weighted spanning tree for a weighted graph with n vertices and m
edges in time O(mlogn). However, the complete graph G g has (’2‘) = Q(n?)
edges. Therefore, a direct application of Kruskal’s algorithm to the complete
graph Gg would result in an O(n?logn)-time algorithm for constructing a
Euclidean minimum spanning tree for the set S. Another well-known for
constructing the minimum weighted spanning tree for a weighted graph is
Prim’s algorithm [25], which runs in time O(n?).

One possible way to have a more efficient algorithm for the problem is to
exclude most of the edges in the graph Gg. For example, if we can exclude all
but O(n) edges in the graph Gg, then Kruskal’s algorithm on the graph Gg
with fewer edges would give an O(nlogn)-time algorithm for the Euclidean
minimum spanning tree problem. Interesting enough, this can be achieved
with the help of the Voronoi diagram and the Delaunay triangulation of
point sets in the plane. We start with a few lemmas on the relationship
between the Delaunay triangulation and the Euclidean spanning trees.

Lemma 7.4.1 Partition the point set S into two non-empty disjoint subsets
Sy and So. If [p1,p2| is the shortest line segment with py € S1 and py € Sa,
then the segment [p1,p2] is an edge in the Delaunay triangulation D(S).

PROOF. Suppose that the segment [p1,ps2] is not an edge in the Delaunay
triangulation D(S). By the definition of D(S), the perpendicular bisector
of [p1,p2] contains no Voronoi edge of Vor(S). Let V4 be the Voronoi poly-
gon for the point p; in the Voronoi diagram Vor(S), and suppose that the
segment [p1, po] intersects the Voronoi polygon V) at a point ¢ that is on the
Voronoi edge e of the Voronoi polygon V; in Vor(S). Note that the point ps
cannot be contained in V) (including the boundary of V}) since the polygon
V1 is the locus of points closer to p; than to any other points in S. Suppose
that the Voronoi edge e is defined by the point p; and another point p3 in
the set S. See Figure 7.3. By the definition, the points p; and p3 are the
closest points in the set S to the points on the edge e. Therefore (here |pg|
denotes the length of the segment [p, q]),

Ipip2| = |p1g| + lap2| > |pig| + |aps| > |pips], (7.1)

where the last inequality is due to the fact that the point ¢ cannot be on
the segment [p;,ps] — otherwise, the three points pj, ps and p3 would be
co-linear. Moreover, since we have Zgpsp1 = /p3p1q, and the point ¢ is an

122 REDUCTIONS

Figure 7.3: [p1, p2] intersects Vi at g

internal point of the segment [p1ps], we must have

Lpap3p1 > Lqp3p1 = Lp3p1q = Lp3p1p2

By elementary geometry (larger side is opposite larger angle), we have

[p1p2| > |p2ps|. (7.2)

Now we obtain a contradiction. By inequalities (7.1) and (7.2), both seg-
ments [p1, ps] and [p2, ps] are shorter than the segment [p1,p2]. If p3 € Si
then we pick the segment [p2, ps], and if ps € Sz then we pick the segment
[p1,p3]. No matter what set the point ps belongs to, we would always be
able to find a segment with one end in S7 and the other end in S5 such
that the segment is shorter than the segment [p1,p2]. This contradicts the
assumption that [p1, ps] is the shortest such a segment.

This contradiction proves that the segment [p1, p2] must be an edge in
the Delaunay Triangulation D(S) of the point set S. [

Lemma 7.4.2 Let p; and pa be two points in the set S. The segment [p1, p2]
is an edge of a Fuclidean minimum spanning tree for S if and only if there
is a partition of the set S into two subsets S and Sz such that [p1,p2] is the
shortest segment with one end in S1 and the other end in Ss.

PROOF. Suppose that [p,pe] is an edge of a Euclidean minimum spanning
tree T for the set S. Deleting the edge [p1, p2] from T results in two disjoint
subtrees 77 and T5. Let S; and Sy be the sets of points in S that are the
vertices of the trees 17 and 15, respectively. The sets S; and S5 obviously
form a partition of the set S and each of the sets S; and So contains exactly
one of the points p; and ps. We claim that the segment [p;,p2] is the
shortest segment with one end in S; and the other end in Ss. In fact, if

MINIMUM SPANNING TREE 123

[p, p] is a shorter segment with one end in S} and the other end in Sy, then
the segment [p, p'] cannot be in the tree T — otherwise, the two subtrees
T; and Ty would be connected by the two segments [p, p'] and [p1, p2], and
the tree 1" would contain a cycle. Now in the tree T, replacing the segment
[p1,p2] by the segment [p, p'] would give a Euclidean spanning tree 7" for S
such that the sum of the edge lengths of the tree T” is strictly less than the
sum of the edge lengths of the tree T', contradicting the assumption that T
is a Euclidean minimum spanning tree for S. As a conclusion, [p1, p2] must
be the shortest segment with one end in S and the other end in Ss.
Conversely, suppose that there is a partition of the point set .S into two
non-empty subsets S and Sy such that [p1, po] is the shortest segment with
one end in S7 and the other end in S5. Let T be a Euclidean minimum
spanning tree for the set S. If T' contains [p1,p2], then we are done. Oth-
erwise, adding the segment [p;, p2] to the tree T results in a unique simple
cycle C. Since the segment [p1,ps] is on the cycle C' and p; and py are in
different sets of S and Sy, there must be another segment [p, p'] on the cycle
C, thus in the tree T, such that the points p and p’ are in different sets of Sy
and So. Since [p1,p2] is the shortest segment with two ends in different sets
of S; and Ss, the segment [p,p] is at least as long as the segment [p1, pa].
Replacing the segment [p,p'] in T by the segment [p1,p2] gives a new Eu-
clidean spanning tree T” of S such that the sum of the edge lengths of T’
is not larger than the sum of the edge lengths of T'. Since T is a Euclidean
minimum spanning tree for S, the sum of the edge lengths of the tree T’
must be the same as that of T'. Therefore, T” is also a Euclidean minimum
spanning tree for the set S and T” contains the segment [py, po]. [J

Corollary 7.4.3 If a segment [p1p2] is an edge of a Euclidean minimum
spanning tree for the point set S, then the segment [pip2] is an edge in the
Delaunay triangulation D(S) of the set S.

PROOF. The corollary follows from Lemmas 7.4.1 and 7.4.2 directly. [J

By Corollary 7.4.3, the Delaunay triangulation D(S) of the point set
S contains all segments that are in (any) Euclidean minimum spanning
trees of the set S. Thus, if we take D(S) as a weighted graph Gp(g) in
which the weight of an edge [p1,p2] in Gp(g), where [p1,po] is a segment in
D(S), is equal to the Euclidean distance between the points p; and pg, then
a Fuclidean minimum spanning tree of the set S is a minimum weighted
spanning tree of the graph G'p(g). This suggests the following algorithm.

124 REDUCTIONS

Algorithm EMST(S)

Input: a set S of n points in the plane

Output: a Euclidean minimum spanning tree of S

1. construct the Delaunay triangulation D(S) for the set S;

2. construct the weighted graph G_D(S);

3. apply Kruskal’s algorithm on G_D(S) to find a MST T for G_D(S);
4. return(T).

The analysis of the algorithm EMST is simple. By Corollary 7.3.4, step 1
of the algorithm for constructing the Delaunay triangulation D(S) takes time
O(nlogn). To construct the graph G-D(S), we simply compute the length
of each edge in the Delaunay triangulation D(S). Since D(S) is a planar
graph of n vertices, the number of edges of G.D(8) is bounded by O(n) (see
section 2.4). Thus, step 2 of the algorithm takes in time O(n). Kruskal’s
algorithm runs in time O(m logn) on a weighted graph with n vertices and m
edges. Since the graph G_D(S) has O(n) edges, the application of Kruskal’s
algorithm on G_D(S) takes time O(nlogn). This gives the following theorem.

Theorem 7.4.4 Given a set S of n points in the plane, the Euclidean min-
imum spanning tree of S can be constructed in time O(nlogn).

For completeness, we give a brief description of Kruskal’s algorithm for
constructing a minimum weighted spanning tree in a weighted graph. Since
the algorithm has been well studied and given in many textbooks, the de-
scription here omits some details. The interested reader is referred to [2].

Kruskal’s algorithm finds the minimum weighted spanning tree for a
weighted graph G by simply adding edges one at a time, at each step using
the lightest edge that does not form a cycle. The algorithm gradually builds
up the tree one edge at a time from disconnected components. The correct-
ness of the algorithm follows from a theorem for weighted graphs that is
similar to our Lemma 7.4.2 for the Euclidean case.

To implement Kruskal’s algorithm, suppose that the number of vertices
of the graph G is n, and that the number of edges of G is m. We first presort
all edges of G by their weights in non-decreasing order, then try to add the
edges in order. The presorting of edges of G takes time O(mlogm) =
O(mlogn). We then maintain a forest F', which is a list of disjoint subtrees
in the graph G. Each subtree T in the forest F' is represented by a Union-
Find tree whose nodes are the vertices of the subtree T'! (to distinguish the
subtrees in the forest F', which are subtrees in the weighted graph G, from
the Union-Find trees that represent the subtrees in F', we call the vertices
of the subtrees in F' wvertices, while call the vertices of the Union-Find trees

'For detailed discussions on the Union-Find structures, see [2], Section 4.7.

MaxiMuM EMPTY CIRCLE 125

nodes). Initially, the forest F' is a list of n trivial trees, each consists of a
single vertex of G. Pick the next edge e = [v,u] from the sorted list of edges
of G, and check if v and u are in the same subtree in the forest F'. This can
be done by two Find operations followed by checking if the roots of the two
corresponding Union-Find trees are the same. If v and u are in the same
subtree in the forest F', then adding the edge e = [v, u] would result in a cycle
in the forest F'. So we should not add the edge e to the forest . On the
other hand, if v and w are in different subtrees in the forest F', then the edge
e does not form a cycle in the forest F', so we should add the edge e to the
forest F'. This is equivalent to merging the two corresponding Union-Find
trees that contain the vertices v and u in F', respectively. This can be done by
a single Union operation. We keep adding edges until the forest F' becomes
a single tree, which can be proved to be a minimum weighted spanning
tree of the weighted graph G. Since for each edge in the graph, at most
three Union-Find operations are performed, to construct the final minimum
weighted spanning tree, we need at most 3m Union-Find operations. This
can be done in time O(ma(n)), where a(n) = o(log(n)) (see [2], Section 4.7
for detailed discussion). This leads to the conclusion that the running time
of Kurskal’s algorithm is O(mlogn) + O(ma(n)) = O(mlogn).

7.5 Maximum empty circle

Given a set S of n points in the plane, we are interested in finding a largest
circle that does not contain any point in S. The problem has applications in
areas such as scheduling and location planning. However, without further
constraints, the problem is not very well-defined — from a place that is
far enough from the point set S, we can make an arbitrarily large empty
circle. Thus, we enforce a further constraint that the center of the circle
must be contained in the convex hull of the point set S. This motivates the
MAXIMUM-EMPTY-CIRCLE problem, which is formally defined as follows:

MAXiMUM-EMPTY-CIRCLE

given a set S of n points in the plane, find a largest circle that
has its center in the convex hull CH(S) of S and contains no
points of the set S in its interior.

Such a circle will be called a mazimum empty circle for the set S. A maxi-
mum empty circle for a point set S can be specified by its center and radius.

We first consider where the center of a maximum empty circle can be
located.

126 REDUCTIONS

Lemma 7.5.1 The center of a mazimum empty circle for a set S of points
in the plane must be either a Voronoi vertex of Vor(S), or an intersection
of a Voronoi edge of Vor(S) and a boundary edge of the convex hull CH(S).

PROOF. Suppose that C is a maximum empty circle for the point set S
such that C is centered at a point q.

Since C is a maximum empty circle, the boundary of the circle C' must
contain at least one point of the set S — otherwise, we can increase the radius
of C' (without moving the center ¢ of C') to get a larger empty circle.

If the boundary of the circle C' contains only one point p; in the set
S, then we can move the center ¢ of the circle C' away from the point p;,
increase the radius of C, and keep the circle empty. This contradicts our
assumption that C' is a maximum empty circle.

Consequently, the center ¢ of the circle C' cannot be in the interior of
any Voronoi polygon V; of a point p; in the set .S — otherwise, the point p;
would be the only closest point in S to the center g and the boundary of the
circle C' cannot contain any other points in the set S except p.

Therefore, the point ¢ must be on a Voronoi edge of the Voronoi diagram
Vor(S) and the boundary of the circle C' contains at least two points in the
set S. Suppose that the point ¢ is not on a Voronoi vertex of Vor(S), then
there are exactly two points p; and p; in the set S on the boundary of the
circle C. If g is not on the boundary of the convex hull CH(.S), then we can
move g along the Voronoi edge, which is the perpendicular bisector of p; and
pj, in two opposite directions, in which one would move ¢ away from both
p; and p; (without getting out of the convex hull CH(S)), and increase the
radius of the circle, thus getting a larger empty circle. This again contradicts
the assumption that C' is a maximum empty circle for the set S.

In conclusion, the center ¢ of the maximum empty circle C' must be
either a Voronoi vertex in the Voronoi diagram Vor(S), or an intersection of
a Voronoi edge in Vor(S) and the boundary of the convex hull CH(S). []

Let g be either a Voronoi vertex of the Voronoi diagram Vor(S) or an
intersection of a Voronoi edge in Vor(S) and an edge of the convex hull
CH(S). The radius of the largest empty circle centered at ¢ can be computed
easily. In fact, if ¢ is a Voronoi vertex of Vor(S), then by Lemma 5.2.3, the
point ¢ is equidistant from three points in the set S and no points of S is in
the interior of the circle defined by these three points. Therefore, the circle
defined by these three points must be the largest empty circle centered at
g. On the other hand, if ¢ is an intersection of a Voronoi edge and a convex
hull edge, then exactly two points p; and p; in the set S are closest to ¢, so

MaxiMuM EMPTY CIRCLE 127

the largest empty circle centered at ¢ must have radius |gp;| = |qp;|.

If the Voronoi diagram Vor(.5) is given by a DCEL, then in constant time,
we can compute the radius of the largest empty circle centered at a Voronoi
vertex v, by an algorithm Trace-Vertex that is similar to the algorithm
Trace-Region in section 2.4, to traverse all incident Voronoi edges and all
incident Voronoi polygons of the vertex v. (Note that a Voronoi vertex has
degree exactly 3.) By Lemma 5.2.6, the Voronoi diagram Vor(S) has O(n)
Voronoi vertices. Thus, in linear time we can construct all largest empty
circles that are centered at the Voronoi vertices of Vor(S). Note that not all
these circles are candidates of the maximum empty circle for the set S: those
largest empty circles that are centered at a Voronoi vertex that is outside
the convex hull CH(.S) should be excluded. We will discuss later how to find
these Voronoi vertices that are outside the convex hull CH(S).

Now let us discuss the points that are intersections of Voronoi edges and
the convex hull edges. The first question is: how many such intersections
can there be?

Lemma 7.5.2 There are at most O(n) points that are intersections of
Voronoi edges and convex hull edges.

PROOF. Since the convex hull CH(S) is convex, a Voronoi edge in Vor(S),
which is either a straight line segment or a straight semi-infinite ray, can
intersect CH(S) at at most two points. Moreover, by Lemma 5.2.6, the
Voronoi diagram Vor(.S) has at most O(n) Voronoi edges. [l

The following observation is also important.

Lemma 7.5.3 Each boundary edge of the convex hull CH(S) intersects at
least one Voronoi edge of Vor(S).

Proor. If a boundary edge e = [p;, pj] of CH(S) does not intersect any
Voronoi edges, then the entire segment [p;, p;] is contained in a single Voronoi
polygon of Vor(S). But this is not possible, since the points on [p;, p;] that
are very close to the point p; should be contained in the Voronoi polygon
for the point p;, while the points on [p;, p;] that are very close to the point
p; should be contained in the Voronoi polygon for the point p;. [

For simplicity, we will call the intersections of the Voronoi edges and the
convex hull edges that are not a Voronoi vertex, the intersecting points. An
intersecting point ¢’ is the successor of another intersecting point ¢ if the

128 REDUCTIONS

partial chain on the boundary of the convex hull CH(S) from ¢ to ¢/, in
clockwise ordering, contains no other intersecting points.

Lemma 7.5.4 If we traverse the boundary of a Voronoi polygon clockwise,
starting from an intersecting point q and leaving the convex hull, then we
must encounter at least another intersecting point. The first intersecting
point after ¢ we encounter must be the successor of q.

PRrROOF. Let the Voronoi polygon we are going to traverse be V;. Since the
point ¢ is on the boundary of V; and is an intersecting point, the Voronoi
polygon V; must have at least one vertex inside the convex hull CH(SS) and
at least one vertex outside the convex hull CH(.S). Since we are traversing
the boundary of V; and leaving the convex hull CH(.S), we must eventually
come back and enter the convex hull CH(S) in order to reach the vertices of
V; that are inside CH(S). Therefore, the boundary of the polygon V; must
intersect CH(S) at at least another point. Let ¢’ be the first intersecting
point after ¢ we encounter in the traversing. Since both the partial chain of
V; between ¢q and ¢’, and the partial chain of CH(.S) between ¢ and ¢’ make
only right turns, and because both V; and CH(S) are convex, the partial
chain of CH(S) between ¢ and ¢’ must be entirely contained in the Voronoi
polygon V;. This implies that no intersecting points are between the points
q and ¢ on the partial chain of CH(S). Therefore, the intersecting point ¢
is the successor of the intersecting point ¢q. [J

Now it is quite clear how we find all intersecting points. We start with
an intersecting point ¢, traverse in clockwise order a Voronoi polygon V; in
the direction of leaving the convex hull CH(S). We will encounter another
intersecting point ¢’, which is the successor of the intersecting point ¢q. At
the point ¢/, we reverse the traversing direction and start traversing, from
the point ¢/, a Voronoi polygon that is adjacent to V;, again in clockwise
order and in the direction of leaving the convex hull CH(S). We will then
encounter the successor of the intersecting point ¢’, etc.. We repeat this
procedure until we come back to the first intersecting point q.

We summarize this in the following algorithm.

Algorithm Find-Intersections
Input: the Voronoi diagram Vor(S) and the convex hull CH(S)
Output: all intersecting points of Vor(S) and CH(S)
1. find an intersecting point q_0; Output(q_0);
2. traverse a Voronoi polygon to find the successor q’ of q_0;
3. While (q’ <> q_0)
Output(q’); q = q’;
reverse the traversing direction to traverse the adjacent
Voronoi polygon to find the successor q’ of q.

MaxiMuM EMPTY CIRCLE 129

We analyze the algorithm, assuming that the Voronoi diagram Vor(S) is
given by a DCEL and the convex hull CH(.S) is given by a circular doubly-
linked list. To find the first intersecting point q-0, we pick any boundary
edge e of the convex hull CH(S), scan the DCEL representing the Voronoi
diagram Vor(.S) edge by edge, and check which edge of Vor(S) intersects e.
By Lemma 7.5.3, e intersects at least one Voronoi edge in Vor(S). Thus, in
time O(n), we will find a Voronoi edge that intersects e and obtain the first
intersecting point q_0. So step 1 of the algorithm takes time O(n).

Starting from an intersecting point ¢, we traverse the part of a Voronoi
polygon that is outside the convex hull CH(S). By Lemma 7.5.4, we will en-
counter the successor of ¢. For this, we have to check, for each Voronoi edge
e we are traversing, if e intersects the convex hull CH(S). This seems to need
Q(n)-time to check all boundary edges of the convex hull CH(S) for each
Voronoi edge e. Fortunately, since each boundary edge of CH(.S) contains at
least one intersecting point (Lemma 7.5.3), the successor of ¢ must be either
on the boundary edge e, of CH(SS) where the intersecting point ¢ is located,
or on the boundary edge of CH(S) that is next to the boundary edge e,.
Therefore, for each Voronoi edge e we are traversing, we only have to check
two boundary edges on the convex hull CH(S). As a result, each Voronoi
edge can be processed in constant time. Moreover, each Voronoi edge that is
outside the convex hull CH(SS) is traversed at most twice since each Voronoi
edge is on the boundary of exactly two Voronoi polygons. Therefore, the
total time spent on step 2 and step 3 in the algorithm Find-Intersections
is bounded by the number of Voronoi edges that are outside the convex hull
CH(S), which is in turn bounded by the number of Voronoi edges of the
Voronoi diagram Vor(S), which is, by Lemma 5.2.6, bounded by O(n).

Thererfore, the time complexity of the algorithm Find-Intersections
that finds all intersecting points is bounded by O(n).

Finally, we discuss how to determine if a Voronoi vertex v is inside or
outside the convex hull CH(S). In the algorithm Find-Intersections,
all Voronoi vertices we encounter during traversing are outside the convex
hull CH(S). So we can simply mark them and not use them as potential
candidates for the center of the maximum empty circle. The question is, can
there be any Voronoi vertex that is outside the convex hull CH(.S) but not
encountered in the traversing of the algorithm Find-Intersections? The
answer is no, as explained in the following paragraph.

Let v be a Voronoi vertex of the Voronoi diagram Vor(SS) that is outside
of the convex hull CH(S). Suppose that v be on the boundary of a Voronoi
polygon V;. The Voronoi polygon V; cannot be completely outside the convex
hull Vor(.S), since otherwise the corresponding point p; in the set S would be

130 REDUCTIONS

outside the convex hull Vor(S). Therefore, the Voronoi polygon V; intersects
CH(S) at at least two points. Let ¢ and ¢’ be two intersecting points of
the Voronoi polygon V; and the convex hull CH(S) such that the vertex
v is contained in the partial chain on the boundary of V; from ¢ to ¢’ in
clockwise ordering, and that no other intersecting points are on this partial
chain. Then the algorithm Find-Intersections will eventually encounter
the intersecting point ¢ and traverse this partial chain in V; from ¢ to ¢'.
Now the vertex v must be encountered.

Summarizing the above discussions gives the following algorithm for solv-
ing the problem MAXIMUM-EMPTY-CIRCLE.

Algorithm Maximum-Empty-Circle
Input: a set S of n points in the plane
Output: a maximum empty circle for S
1. sonstruct the Voronoi diagram Vor(S) and the convex hull CH(S);
2. call the algorithm Find-Intersections to find all intersecting
points of Vor(S) and CH(S);
mark all Voronoi vertices that are outside the convex hull CH(S);
3. For (each intersecting point q found in step 2)
compute the largest empty circle centered at q;
4. For (each unmarked Voronoi vertex v)
compute the largest empty circle centered at v;
5. Return the largest empty circle among those by steps 3-4.

Step 1 of the algorithm Maximum-Empty-Circle takes time O(nlogn), by
Theorem 5.3.7 and by, say, Graham-Scan algorithm. Step 2 of the algorithm
takes time O(n), as we discussed above. The other steps in the algorithm
trivially take time O(n), by Lemma 5.2.6 and Lemma 7.5.2. As a conclusion,
we obtain the following theorem.

Theorem 7.5.5 The problem MAXIMUM-EMPTY-CIRCLE can be solved in
time O(nlogn).

