Chapter 4

Geometric Sweeping

Geometric sweeping technique is a generalization of a technique called plane
sweeping, which is primarily used for 2-dimensional problems. In most cases,
we will illustrate the technique for 2-dimensional cases. The generalization
to higher dimensions is straightforward. This technique is also known as
the scan-line method in computer graphics, and is used for a variety of
applications, such as shading, polygon filling, among others.

The technique is intuitively simple. Suppose that we have a line in the
plane. To collect the geometric information we are interested in, we slide
the line in some way so that the whole plane will be “scanned” by the line.
While the line is sweeping the plane, we stop at some points and update our
recording. We continue this process until all interesting objects are collected.

There are two basic structures associated with this technique. One is for
the sweeping line status, which is an appropriate description of the relevant
information of the geometric objects at the sweeping line, and the other is
for the event points, which are the places we should stop and update our
recording. Note that the structures may be implemented in different data
structures under various situations. In general, the data structures should
support efficient operations that are necessary for updating the structures
while the line is sweeping the plane.

4.1 Intersection of line segments

The geometric sweeping technique can be best illustrated by the following
example. Recall the Segment-Intersection problem:

Segment-Intersection:
Given n line segments in the plane, find all intersections.

33

34 GEOMETRIC SWEEPING

Suppose that we have a vertical line L that is used to sweep the plane
from left to right. At every moment, the sweeping line status contains all
segments intersecting the line L, sorted by the y-coordinates of their inter-
secting points with L. The sweeping line status is modified whenever one of
the following three cases occurs:

1. The sweeping line L hits the left-end of a segment s. In this case,
the segment s was not seen before and it may have intersections with
other segments on the right side of the sweeping line L, so the segment
s should be added to the sweeping line status;

2. The sweeping line L hits the right-end of a segment s. In this case,
the segment s cannot have any intersections with other segments on
the right side of the sweeping line L, so the segment s can be deleted
from the sweeping line status;

3. The sweeping line L hits an intersection of two segments s; and so. In
this case, the relative positions of the segments s; and so in the sweep-
ing line status should be swapped, since the segments in the sweeping
line status are sorted by the y-coordinates of their intersection points
with the line L.

It is easy to see that the sweeping line status of the sweeping line L
will not be changed when it moves from left to right unless it hits either
an endpoint of a segment or an intersection of two segments. Therefore,
the set of event points consists of the endpoints of the given segments and
the intersection points of the segments. We sort the event points by their
z-coordinates.

We use two data structures EV and ST to store the event points and the
sweeping line status, respectively, such that the set operations Minimum,
Insert, and Delete can be performed efficiently (for example, they can be 2-3
trees). At very beginning, we suppose that the sweeping line L is far enough
to the left so that no segments intersect L. At this moment, the sweeping
line status ST is an empty set. We sort all endpoints of the segments by their
z-coordinates and store them in the event point set EV. These are the event
points at which the sweeping line L should stop and update the sweeping
line status ST. However, the list is not complete since an intersection point
of two segments should also be an event point. Unfortunately, these points
are unknown to we at beginning. For this, we update the structure EV in the
following way. Whenever we find an intersection point of two segments while
the line L is sweeping the plane, we add the intersection point to EV. But how

SEGMENT INTERSECTION 35

do we find these intersection points? Note that if the next event point to be
hit by the sweeping line L is an intersection point of two segments s; and s;,
then the segments s; and s; should be adjacent in the sweeping line status
ST. Therefore, whenever we change the adjacency relation in ST, we check
for intersection points for new adjacent segments. When the sweeping line
L reaches the right-most endpoint of the segments, all possible intersection
points are collected.
These ideas are summarized in the following algorithm.

Algorithm Segment-Intersection
Given: n segments sl, s2, ... sn
Output: all intersections of these segments
/* We use a vertical line L to sweep the plane. At any moment, the segments
intersecting L are stored in ST, sorted by the y-coordinates of their
intersection points with the line L. The event points stored in EV are
sorted by their x-coordinates. */
1. EV ={}; ST ={};
2. For (each endpoint p of the segments) Insert(EV, p);
3. While (EV is not empty) Do
p = Min(EV); Delete(EV, p);
If (p is a right-end of a segment s)
let si and sj be the two segments adjacent to s in ST;
If (p is an intersection point of s with si or sj) Report(p);
Delete(ST, s);
If ((si and sj intersect at p’)&(x(p’)>=x(p))) Insert(EV, p’);
Else If (p is a left-end of a segment s)
Insert (ST, s);
let si and sj be the adjacent segments of s in ST;
If (p is an intersection point of s with si or sj) Report(p);
If (s intersects si at pi) Insert(EV, pi);
If (s intersects sj at pj) Insert(EV, pj);
Else If (p is an intersection point of segments si and sj)
/* suppose that sj follows si in ST */
Report (p) ;
swap the positions of si and sj in ST;
suppose now sj follows sk and sh follows si in ST;
If ((sk and sj intersect at q1)&(x(q1)>x(p))) Insert(EV, ql);
If ((sh and si intersect at q2)&(x(q2)>x(p))) Insert(EV, q2);

Let us analyze the algorithm. As we suggested, we can use 2-3 trees
for the structures ST and EV so that each of the following operations on the
structures takes time O(logn): searching an element, finding the smallest
element, deleting an element, and inserting an element. Thus, step 2 of the
algorithm that initializes the structure EV takes time O(nlogn). For step
3, we also need to find the neighboring segments of a given segment in the
structure ST. This can be done by developing algorithms for 2-3 trees that
find the neighbors of a given element in time O(logn) (this is not difficult
but is an interesting exercise problem for 2-3 tree structures).

To count the time spent by the While loop in step 3, suppose there are

36 GEOMETRIC SWEEPING

m intersection points for these n segments. In the While loop, each segment
is inserted then deleted from the structure ST exactly once, and each event
point is inserted then deleted from the structure EV exactly once. There are
n 4+ m event points. Since each of the operations Min, Insert, Delete, and
finding neighbors of a given segment in ST can be done in time O(log N) on
a set of N elements, processing each segment takes time O(logn) time, and
processing each event point takes time O(log(n 4+ m)) time. Therefore, step
3 of the algorithm runs in time

n-O(logn) + (n+m) - O(log(n +m)) = O((n + m) log(n + m)).

Observe that m is at most n?, so log(n+m) = O(logn). Combining this with
the analysis for steps 1-2 of the algorithm, we conclude that the algorithm
Segment-Intersection runs in time O((n + m)logn).

We remark that the time complexity of the above algorithm depends on
the number m of intersection points of the segments and the algorithm is
not always efficient. For example, when the number m is of order Q(n?),
then the algorithm runs in time O(n?logn), which is even worse than the
straightforward method that picks every pair of segments and computes
their intersection point. On the other hand, if the number m is of order
Q(n), then the algorithm runs efficiently in time O(nlogn).

4.2 Constructing convex hulls

There are many algorithms for constructing convex hulls for point sets, in
particular for the case where the point sets are in the 2-dimensional Eu-
clidean space E2. The two most famous algorithms are based on the tech-
nique of plane sweeping, and will be discussed in this section.

4.2.1 Jarvis March

We start with an algorithm that is called Jarvis March, which is also known
as the gift wrapping method.

The idea is based on the observation we gave in the proof of Theo-
rem 3.1.3. Given a set S of n points in the plane, suppose that we move a
straight line L sweeping the plane until L hits a point p; of S. The point
p1 must be on the boundary of the convex hull CH(S) of S since at this
moment, all points of S are in one side of the line L and the point p; is on
the line L. Now we rotate the line L around the point p1, say counterclock-
wise, until L hits another point ps of S. The segment pips is then on the

CONVEX HULLS 37

boundary of the convex hull CH(S) since again all points of S are in one
side of the line L and the segment pips is on the line L. Now we rotate the
line L around py counterclockwise until L hits a third point ps of S, then the
line segment pop3 is the second boundary edge of CH(S). Then we rotate
the line L around ps, and so on. Continue this process until we come back
to the first point p;. The convex hull CH(SS) then is constructed.

This process can also be regarded as a “wrapping” process. Suppose
that we fix an end of a rope on a point p; that is known to be a hull vertex.
Then we try to “wind” the points by the rope (or “wrap” the points by the
rope). The rope obviously gives us the boundary of the convex hull when it
comes back to the point p;.

There are a few things we should mention in the above process. First of
all, the sweeping manner is special: the line L is rotated around a point in
the plane; secondly, the sweeping line status is very simple: it contains at
any moment a single point that is the hull vertex most recently discovered;
finally, the even points are the hull vertices.

Let us study the process in detail. Suppose that at some moment during
the process, the consecutive hull vertices that have been found are p1, po,

-+, p;. What point should be the next hull vertex? Obviously, the point
pi+1 should be the one that is first touched by the rope when we rotate
the rope around the point p;. That is, the angle /p;_1p;p;+1 should be the
largest. We implement this idea in the following algorithm.

Algorithm Jarvis March
Input: a set S of n points in the plane
Output: the convex hull CH(S) of S
1. let p[1] be the point in the set S with the smallest y-coordinate;
2. let p[2] be the point in the set S such that the slope of the line
segment {p[1], p[2]} is the smallest among all points in S - p[1];
3. Output(p[1]); Output(pl[2]);
4. i =2 ;
5. While (p[i] <> p[1]) Do
let p[i+1] be the point in the set S such that the angle
<(pli-1]p[ilp[i+1]) is the largest;
i= i+ 1 ;
Output (p[il);

Let us study the complexity of the algorithm Jarvis March. Suppose
there are k hull vertices in the convex hull CH(S) of the point set S. The
points p[1] and p[2] are obviously hull vertices. Moreover, it is clear that
to find the points p[1] and p[2] takes time O(n), assuming S has n points.
To find each next hull vertex p[i+1], we check the angle /p[i-1]p[ilp for
each point p in the set S. Thus, step 5 spends time O(n) on each hull vertex.
In conclusion, the algorithm Jarvis March runs in time O(kn).

38 GEOMETRIC SWEEPING

If k£ is small compared with n, for instance, if k is bounded by a constant,
then the algorithm Jarvis March runs in linear time. On the other hand,
if k is large, such as k = Q(n), then Jarvis March runs in time (n?).

4.2.2 Graham Scan

Consider the algorithm Jarvis March. Suppose that the most recent hull
vertex is p and the most recent hull edge is e. We find the next hull vertex by
choosing the point ¢ that makes the angle between e and pg the largest. To
find the point ¢, we compute the angle between the segments e and pp/ for
every point p’ in the set S. For each hull vertex, we apply this process to find
the next hull vertex. In this process, even though we have found out that a
point p’ is not qualified for the next hull vertex, we still cannot exclude the
possibility that the point p’ is qualified for a later hull vertex. This is the
reason that we have to consider the point again and again. A point can be
considered up to n times in the worst case. A possible improvement is that
we presort the set of points in some way so that once we find that a point
is not qualified for the next hull vertex, we can exclude the point forever.
For example, let pg, p1 and py be three distinct hull vertices of the convex
hull CH(S) for the set S. Suppose that the line segment pips is known to
be on the boundary of the convex hull CH(S). Then the line segments pop
for all points p of S that are between the angle /pipgop2 should be entirely
in the triangle Apop1p2. Therefore, if we start with the point py, and rotate
the segment pgp; around the point py counterclockwise to sweep the plan,
then once we reach the point po, we can eliminate all points we have visited
between the points p; and pe. This elimination is permanent, i.e., once a
point is eliminated, it will be ignored forever.

The above idea is implemented by the following well-known algorithm,
known as Graham Scan.

Algorithm Graham-Scan
Input: a set S of n points in the plane
Output: the convex hull CH(S) of S
1. assume point p[0] in S with the smallest y-coordinate is the origin;
/* if this is not the case, make a coordinate transformation. */
2. sort the points in the set S-p[0] by their polar angles:
L = {pl1], pl[2], ..., p[n-11} /* in increasing ordering */
3. Push(K,p[0]); Push(X,p[1]); /* K is a stack */
4. For (i = 2; i < n; i++)
/* K[1] and K[2] are the 1st and 2nd vertices on the top of K. */
While (K[2]K[1]p[i] is a right-turn) Pop(K);
Push(X,p[il).

In Graham-Scan, the sweeping line rotates around a fixed point p[0].
All points in the set S are event points. Since the event points are presorted

CONVEX HULLS 39

in Step 2, it takes only constant time to find the next event point in the
sorted list L. This makes Graham-Scan very efficient.

We make a few remarks on the algorithm Graham-Scan. First of all,
there can be more than one point in the set S that are on the same ray from
the point p[0]. This will cause no problem for the algorithm. However, if we
want to be really specific, we can order the points first by their polar angles
then by their distances to the point p[0]. Thus, with the same polar angle,
points closer to p[0] will be considered first. Note that when a further point
is considered, the points with the same polar angle but shorter distances
will be right-turns and popped out from the stack K, which, obviously, is
correct. Secondly, three points K[2]1K[1]1p[i] that make a straight line will
be regarded as a right-turn so that step 4 of the algorithm will pop the point
K[1] out of the stack K. This is correct since in this case, if K[1] is on the
boundary of the convex hull CH(S) then the segment K[2]p[i] will be on
the boundary of CH(S) so K[1] cannot be a hull vertex.

To show the correctness of the algorithm Graham-Scan, we first prove
that a point p in S is a hull vertex if and only if for any two points p; and
p2 in S, where the polar angle of p is larger than that of p; but smaller than
that of pg, the segments pipps is always a left-turn. First of all, if for some
such two points p; and ps, the segments p1pps is a right-turn, then the point
p will be contained in the triangle given by the three points p1, p2, and p [0]
in S, thus cannot be on the boundary of CH(S). On the other hand, if pipp2
is always a left-turn for all such points p; and po in S, then pick the points
p} and p,, in S such that the angle /p/pp), is the largest, then all points in S
are contained in the wedge between the ray from p that contains the point
p} and the ray from p that contains the point p}, and pipp, is a left-turn.
That is, the point p must be a hull vertex.

Thus, in the algorithm Graham-Scan, a hull vertex can never be popped
out from the stack K in step 4. We should also show that if a point is not
a hull vertex, then it will be, sooner or later, popped out from the stack
K. For this, let p; and ps be the two consecutive hull vertices. Then every
point p in S whose polar angle is between that of p; and ps will make p1ppo
a right-turn. Thus, when we sweep from the ray from p[0] that contains
p1, the point p will sooner or later become a right-turn and get popped out
from the stack K. Note that p may become a right-turn not because of the
points p; and pe but because of two points pj and p,, that are between p;
and po. The point is that if these points p} and p), do not exist, then the
points p; and py will eventually make p a right-turn (note that, by the fact
we proved above, the point p; will never be popped out of the stack).

Now we consider the time complexity of the algorithm Graham-Scan.

40 GEOMETRIC SWEEPING

Step 1 that finds the point with the smallest y-coordinate in the set S can be
done by comparing the y-coordinates of all points in the set S, thus it takes
time O(n). Step 2 can be done by any O(nlogn)-time sorting algorithm
such as MergeSort. Step 3 obviously takes constant time. To discuss the
time complexity of step 4, observe that each point of the set S is pushed into
the stack X once and then may be popped out of the stack later. Whenever
a point is popped out from the stack K, it will never be pushed into the stack
again in later process. Thus, each point of S can cause at most one push and
one pop on the stack X, and there are in total at most 2n stack pushes and
pops in step 4 of the algorithm. Since each push and pop on the stack takes
time O(1), the total time taken by step 4 is bounded by O(n). In summary,
the time complexity of the algorithm Graham-Scan is O(nlogn).

We remark that most of the time in the algorithm Graham-Scan is spent
on step 2’s sorting. Besides sorting, Graham-Scan runs in linear time.

Step 2 of the algorithm Graham-Scan sorts the points in the given set
S by their polar angles. This involves in trigonometric operations. Al-
though we have assumed that our RAM model can perform trigonomet-
ric operations in constant time per operation, trigonometric operations can
be time-consuming in a real computer. We present a modified version of
Graham-Scan that avoids using trigonometric operations.

The idea is as follows. Suppose that we are given a set S of n points in
the plane. We add a new point pg to the set .S such that pg’s y-coordinate is
smaller than that of any point in the set S. Then we perform Graham Scan
on this new set. Draw a line segment pop for each point p in the set S. It can
be easily seen that if the point pg moves toward the negative direction of the
y-axis, these line segments are getting more and more parallel each other.
Imagining that eventually the point pg reaches the infinite point along the
negative direction of the y-axis, then all these line segments become vertical
rays originating from the points of the set S. Now the ordering of the polar
angles of the points of S around pg is identical with the ordering of the
x-coordinates of these points. (In fact, pg does not have to be the infinite
point, when pg is far enough from the set .S, the above statement should
be true.) Therefore, the convex hull of the new set can be constructed by
first sorting the points in S by their xz-coordinates instead of their polar
angles. It is also easy to see that the convex hull of the new set consists of
two vertical rays, originating from the two points ppin and pmax in the set
S with the smallest and the largest z-coordinates, respectively, and a part
Hy of the convex hull CH(S) of the original set S. This part Hy of the
convex hull CH(S) is in fact the upper hull of the convex hull CH(S) in the
sense that all points of the set S lie between the vertical lines x = xp;, and

FARTHEST PAIR 41

T = Tmaz and below the part Hy. Similarly, the lower hull of the convex
hull CH(S) can be constructed by the idea of adding an infinite point in the
positive direction of the y-axis. The convex hull CH(S) is then simply the
circular catenation of the upper hull and the lower hull.
The algorithm is presented as follows.

Algorithm Modified-Graham-Scan

Input: a set S of n points in the plane

Output: the convex hull CH(S) of S;

1. L = the points in S sorted in decreasing x-coordinate ordering;

2. pmax = the point (x,y) in S with the largest x-coordinate;

3. let p+ = (x,y-1); Push(K,p+); Push(K,pmax); /* K is a stack */

4. perform Graham Scan using the sorted list L;

/* the resulting list minus the point p+ is the upper hull. */
5. construct the lower hull using the point in S with the smallest

x-coordinate and the list L reversed;
6. catenate the upper and lower hulls to form the convex hull CH(S).

It is obvious that algorithm Modified-Graham-Scan runs in time O(nlogn).

4.3 The farthest pair problem

The problem we shall discuss in this section is formally defined as follows:

Farthest-Pair
Find a pair of points in a given set S of points in E? whose
distance is the largest among all pairs of points in S.

A brute force algorithm is to examine every pair of points in S to find the
pair with the largest distance. Thealgorithm obviously runs in time O(n?).

To get a more efficient algorithm, let us first investigate what kind of
properties a farthest point pair in a set has. Let us suppose that S is a set
of n points in the plane, and call a segment linking two farthest points in
the set S a diameter of the set S.

Lemma 4.3.1 Let uwv be a diameter of a set S of points in the plane. Let
ly and l, be two straight lines that are perpendicular to the segment uv such
that 1, contains u and l, contains v. Then all points of S are contained in
the slab between the lines 1, and l,.

Proor. Without loss of generality, suppose that the segment uv is horizon-
tal and the point w is on the left of the point v. Draw a circle C centered at
u of radius |uv|, then the line [, is tangent to C' because [, is perpendicular
to wo. Thus the circle C' is entirely on the left of the line [,. Since v is the

42 GEOMETRIC SWEEPING

farthest point in the set S from the point u, all points of S are contained
in the circle C'. Consequently, all points of S are on the left of the line [,.
Similarly, we can prove that all points of S are on the right of the line [,,.
Therefore, all points of the set S are between the lines [, and [,,. []

Corollary 4.3.2 Let wv be a diameter of a set S of points in the plane,
then the points u and v are hull vertices of CH(S).

PROOF. As we discussed in Chapter 2, a point p in S is a hull vertex of
CH(S) if and only if there is a line passing through p such that all points of
S are on one side of the line. []

Two hull vertices u and v of the convex hull CH(S) are called an antipodal
pair if we can draw two parallel supporting lines [,, and I, of CH(S) such
that [, passes through u and [,, passes through v, and the convex hull CH(.S)
is entirely contained in the slab between the lines [, and I,.

Corollary 4.3.3 Let uv be a diameter of the set S, then u and v make an
antipodal pair.

ProoOF. By Corollary 4.3.2, the points u and v are hull vertices of CH(S).
By Lemma 4.3.1, we can draw two parallel lines [,, and [,, such that [,, passes
through w, that [, passes through v, and that all points of S are contained
in the slab between [, and [,,. The slab between [,, and [, is clearly a convex
set. Since the convex hull CH(S) of S is the smallest convex set containing
all points of S, i.e., the convex hull CH(S) is contained in all convex sets
that contain all points of S, the convex hull CH(S) is contained in the slab
between the lines [, and I,. [

According to Lemma 4.3.1 and its corollaries, to find a farthest pair
of a set S of n points in the plane, we only need to find a farthest pair
among the hull vertices of the convex hull CH(S). Moreover, we only need
to consider antipodal pairs on the convex hull CH(SS). This greatly simplifies
our problem. For this, we now consider the following problem: given a vertex
u of a convex polygon P, which vertices of the polygon P can constitute an
antipodal pair with the vertex u?

To answer this question, we first make some conventions and introduce
some terminologies. We suppose that the vertices of the convex polygon P
are given in counterclockwise ordering: {ug,u1,...,un—1}. We may write a
vertex of P as u; where 7 is larger than m — 1 or smaller than 0 — in this

FARTHEST PAIR 43

Figure 4.1: The convex polygon P

case, the index i is interpreted as i (mod m). For each vertex u; of P, let
a; be the angle from the z-axis to the edge [u;, u;+1] (directed from w; to
u;+1). Thus, we have 0 < o; < 27 for all 4. See Figure 4.1 for an illustration.
Again, we may write an angle a; whose value is outside of the interval [0, 27)
— in this case the angle «; is interpreted as «; (mod 27).

A vertex u; of P is a farthest vertex from an edge [ux_1, ux) of P if among
all vertices of P, u; is the farthest from the straight line that contains the
edge [ug—_1,ug]. A vertex w; is the first (resp. last) farthest vertex from
[ug—1,ug| if u; is the first (resp. last) farthest vertex from [ug_1,ur] when
we traverse the polygon P, counterclockwise, starting from the vertex wuy.

For each supporting line on the convex polygon P, we assign it an angle,
as follows. First, draw a horizontal line L passing through the vertex of P
with the smallest y-coordinate, and give the line L the same direction as
that of the z-axis. Then rotate the line L around the convex polygon P,
counterclockwise, keeping the line in touch with the polygon P. Thus, for
every supporting line L’ of P, the line L will become L’ at some moment
during this process. We then define the direction of the supporting line L’/
be to that of the corresponding line L at that moment. Now the angle of the
supporting line L’ is defined to be the angle from the z-axis to the supporting
line L' with the given direction. Note that the angle of a supporting line is
between 0 and 27. In particular, if a supporting line L’ contains an edge
[u;—1,u;] of the polygon P, then the angle of L’ is equal to a;_1.

Lemma 4.3.4 Two vertices ux and uy, of the convex polygon P make an an-
tipodal pair if and only if the angle interval [ap—1,] and the angle interval
[+ ak_1, ™+ ay| intersect.

PRrOOF. For any i, the angle of the supporting line of P that contains the
edge [a—1, o] is aj—1, and the angle of the supporting line of P that contains

44 GEOMETRIC SWEEPING

the edge [a;, aj+1] is ;. Thus, a supporting line of P contains the vertex u;
if and only if its angle is in the angle interval [a;_1, a;].

By the definition, the two vertices u; and up make an antipodal pair if
and only if there exist a supporting line L; at u; and a supporting line Ly,
at uy, such that Ly and Ly are in parallel, and that the polygon P is entirely
contained in the slab between L; and Lj. By the concept of the angle of a
supporting line of P as we introduced earlier, this means that the angle of
Ly, is w plus the angle of Li. Since the angle of Ly is in the angle interval
[ak—1, k], the angle of Ly must be in the angle interval [+ ag—1, 7 + ag].
Since the angle of Ly, is in the angle interval [a;_1, «p], this means that the
angle interval [a,—1, o] and the angle interval [m+ay_1, T+ag] intersect. On
the other hand, if « is a common angle in the intersection of the angle interval
[an—1,ap) and the angle interval [T +ay_1, 7+ag], then we have a supporting
line L} of angle cv at uy, (because « is in [ap—1, a)) and a support line L) of
angle T+« at uy, (because m+a is in [m+(m4ag_1), 7+ (7m+ak)] = [ak—1, ak))
where L} and Lj, are in parallel and the polygon P is contained in the slab
between L) and Lj, i.e., the vertices uj; and uj, make an antipodal pair. []

Lemma 4.3.4 leads to the following interesting observation.

Corollary 4.3.5 Let uy, be the first farthest vertex from the edge [ug_1,ug],
and let u, be the last farthest vertex from the edge [ug,uky1] of the polygon
P. Then a vertex u; makes an antipodal pair with the vertex u if and only
if u; is a vertex in the sequence {up, Upi1,. .., Ur—1, Uy} from up to u,.

PRrROOF. Let u; be any vertex in the vertex sequence ugy1, ..., up—1. Since
u; is not a farthest vertex from the edge [up_1,ug], the angle difference
a; — ap—1 must be smaller than 7 (because the edge [u;, u;+1] is leading
from vertex u; to a farther vertex w;; from the edge [ug—1,ug]). Thus,
T+ Qp_1 > «;. Since ag > ap_1 and o; > a;_1, we get

o1 <o < T+ -1 < T+ Q.

Thus, the angle intervals [o;—1, ;] and [7 + ag_1, 7™ + o] do not intersect.
By Lemma 4.3.4, vertex u; cannot make an antipodal pair with vertex wuy.

Similarly, Let u; be any vertex in the vertex sequence u,41, ..., Up—1.
Since u; is not a farthest vertex from the edge [ug, ux41], the angle difference
aj—1 — oy, must be larger than 7 (the edge [uj_1,u;] is leading from vertex
uj—1 to the vertex u; closer to the edge [ug_1,u]). Thus, 7+ o < oj_1.
Since aj—1 < a and a; > oj_1, we get

TH+ o1 <7T+oap <aj-1 <oy,

FARTHEST PAIR 45

i.e., the angle intervals [a;_1, ;] and |7+ ag_1, 7™+ aj] do not intersect. By
Lemma 4.3.4, vertex u; cannot make an antipodal pair with vertex uy,.

Thus, if a vertex is not in the sequence {up, upt1, ..., Ur—1, Uy}, it cannot
make an antipodal pair with ug.

Now consider any vertex u; from the sequence {up, up41,. .., Ur—1,Ur}.

If u; is a farthest vertex from the edge [ug—1,ug], then the vertex us—;
cannot be farther than vertex u; from the edge [ug_1, ug], so y—1—ap_1 < 7.
On the other hand, the vertex u; cannot be closer than the vertex u;yq to
the edge [ug_1, u] so ay—ay_1 > 7. As aresult, the angle interval [oy_1, o]
contains the angle m+ay_1 that is also in the angle interval [7+ay_1, T+ ay].
By Lemma 4.3.4, the vertex u; makes an antipodal pair with the vertex uy.

If u; is a farthest vertex from the edge [ug, ug+1], then the vertex w1
cannot be farther than vertex w; from the edge [ug, ugs1], S0 ap—1 — o < ,
and the vertex u; cannot be closer than the vertex w41 to the edge [ug, uj11]
so oy — ap > . As a result, the angle interval [oy—1, o] contains the angle
7+ i that is also in the angle interval [7 4+ ay, ™ + ag41]. By Lemma 4.3.4,
the vertex u; makes an antipodal pair with the vertex wuy.

Finally, suppose that u; in the sequence {up,up+1,...,ur—1,u,} is a
farthest vertex from neither the edge [ug_1, ux] nor the edge [ug, ug41]. Since
uy, is a farthest vertex from [ug—_1, ux|, o, — ap—1 > 7. Since i > h, a; > ay,
SO (v — (1 > m, 1.e., a; > T+ ay_1. Moreover, because u; is not a farthest
vertex from [ug, upi1], @ — ap < 7, i.e., a; < 7+ ag. Therefore, the angle
intervals [a;—1, ;] and [T + ag_1, 7™ + ay] intersect. By Lemma 4.3.4, the
vertex u; makes an antipodal pair with the vertex uy.

Thus, in all cases, the vertex u; in the sequence {up, up i1, ..., Up—1,ur}
makes an antipodal pair with the vertex wuy.

This completes the proof of the corollary. [

Now we are ready to present the algorithm, which is given below.

Algorithm Antipodal-Pair
Input: a convex polygon P = [u(0), ..., u(m-1)] in counterclockwise order
Output: all antipodal pairs of P
1. find the first farthest vertex u(h) from edge [u(m-1),u(0)];
2. For (k = 0; k <= m-1; k++)
/* u(h) is the first farthest vertex from [u(k-1),u(k)] */
2.1 While (u(h) is not a farthest vertex from edge [u(k),u(k+1)])
Output ({u(k) ,u(h)}) as an antipodal pair;
h=nh+1;
2.2 /* u(h) is the first farthest vertex from edge [u(k),u(k+1)] */
Output ({u(k),u(h)}) as an antipodal pair;
2.3 /* check the vertex u(h+1) */
If (u(h+1l) is also a farthest vertex from edge [u(k),u(k+1)])
Output ({u(k) ,u(h+1)}) as antipodal pairs.

46 GEOMETRIC SWEEPING

The algorithm Antipodal-Pair works on each vertex u(k), and finds all
vertices that make antipodal pairs with u(k). For each k =0,1,...,m — 1,
the k-th execution of the For-loop at step 2 starts with the vertex u(k) and
the first farthest vertex u(h) from the edge [u(k-1),u(k)]. Note that step
1 correctly prepares this configuration for the vertex u(0). The correct-
ness of steps 2.1-2.3 of the algorithm is ensured by Corollary 4.3.5, which
output all vertices in the sequence that starts from the first farthest ver-
tex to the edge [u(k-1),u(k)] and ends at the last farthest vertex to the
edge [u(k),u(k+1)]. Note that the edge [u(k),u(k+1)] has at most two
farthest vertices. Therefore, it suffices in step 2.3 to check only the vertex
u(h+1) that is right after the first farthest vertex u(h) from [u(k) ,u(k+1)].
Also note that we do not change the index h so u(h) remains as the first
farthest vertex from the edge [u(k),u(k+1)], maintaining a correct config-
uration for the next execution of the For-loop.

Note that the operations on the index h in the algorithm (such as h =
h+1 in step 2.1) should be interpreted as (mod m) operations. To compute
the distance from a vertex u; to an edge [ug_1ug], indeed the distance from
the vertex u; to the straight line containing [ug_jux|, we observe that the
distance is proportional to the area of the triangle A(u;ug_jug). Therefore,
the vertex w; is a farthest from the edge [ug_jug] if and only if the area
of the triangle A(u;ug_q1ug) is less than neither the area of the triangle
A(uj—1ug_1ug) nor the area of the triangle A (u;1ug_1ug).

An intuitive description of the above algorithm is that we use two parallel
lines to sandwich the convex polygon P, then rotate the lines along the
boundary of P, keeping the lines in parallel. We report all pairs of vertices
of P that are at some moment on the two parallel lines at the same time,
respectively, when we rotate the lines.

To analyze the complexity of the algorithm, observe that we keep two
indices k and h in the algorithm. In constant time, at least one of the indices
is advanced. Since the index k is from 0 to m — 1 and the index h marches
the convex polygon P at most twice (the index h stops at the last farthest
vertex from the edge [u(m-1),u(0)]), we conclude that the time complexity
of the algorithm is bounded by O(m).

A further improvement can be made in the algorithm Antipodal-Pair if
we observe that when the index h reaches m — 1, then, actually, all antipodal
pairs of the polygon P have been found. In fact, when the index h is advanced
from m—1 to 0, we are considering the vertex u(0) as a candidate that makes
an antipodal pair with some other vertex of P. On the other hand, all vertices
that make antipodal pairs with u(0) have been found when the index k is
equal to 0. Although this improvement does not change the asymptotic order

TRIANGULATIONS 47

of the time complexity of the algorithm, it may be useful from a practical
point of view.
Now we give the algorithm for the original Farthest-Pair problem.

Algorithm Farthest-Pair

Input: a set S of n points in the plane

Output: the farthest pair in S

1. construct the convex hull CH(S) of S;

2. call Antipodal-Pair on CH(S);

3. output the pair with the largest distance from the result of step 2.

By the discussions given in this section, the above algorithm finds the
farthest pair for a given set S correctly. Moreover, the algorithm runs in
time O(nlogn), which is dominated by the first step.

4.4 Triangulations

Triangulation is a fundamental problem in computational geometry. In
many applications, the first step in working with complicated geometric ob-
jects is to break them into simple geometric objects. The simplest geometric
objects in the plane are triangles. Classical applications of triangulation in-
clude finite element analysis and computer graphics.

Triangulating a set .S of n points in the plane is to joint the points in the
set S by non-intersecting straight line segments so that every region interior
to the convex hull of S is a triangle (it is not difficult to see that if we insists
on using straight line segments, then we cannot always make the exterior
region a triangle). In this section we shall discuss a more general version of
the triangulation problem: given a set S of n points in the plane and a set
E of non-intersecting straight line segments whose endpoints are the points
in S, construct a triangulation 7°(S) of S such that all the segments in the
set E appear in the triangulation T'(S).

Recall that a planar straight line graph (PSLG) G = (S, E) is a finite set
S of points in the plane plus a set E of non-intersecting straight line segments
whose endpoints are the points in the set S. Note that a PSLG is a graph
drawn in the plane but it is not necessarily connected. We always suppose
that a PSLG G is represented by a doubly-connected edge list (DCEL).

The problem we shall discuss is called Constrained Triangulation, for-
mally defined as follows.

Constrained Triangulation

Given a PSLG G = (S, E) in the plane E2, construct a triangu-
lation T'(S) of the point set S such that all segments of E are
edges of T'(.5).

48 GEOMETRIC SWEEPING

4.4.1 Triangulating a monotone polygon

We start with the triangulation problem for a special class of PSLG’s, called
monotone polygon.

A chain C = (v, -+ ,v,) is a PSLG with a set of points S = {v, -+ ,v,}
and a set of segments ' = {7, v;71 | 1 <i <n—1}. A chain C is monotone
with respect to a straight line [if any straight line orthogonal to [intersects
the chain C at at most one point.

Definition A polygon P is monotone with respect to a straight line [
if P is a simple polygon and the boundary of P can be decomposed into
two chains monotone with respect to the straight line . A polygon P is
monotone if it is monotone with respect to the y-axis.

We first solve the following problem: given a monotone polygon P, tri-
angulate the interior of P. That is, we add edges to the polygon P so that
each region in the interior of P is a triangle.

A vertex u of a polygon P is visible from another vertex v of the polygon
P if we can draw a straight line segment s connecting v and v such that
the interior of the segment s is entirely in the interior of the polygon P. In
particular, a vertex is not visible from any of its adjacent neighbors. Note
that, by the definition, a vertex v is visible from a vertex w if and only if
the vertex w is visible from the vertex v.

The method we are going to use is a “greedy” method. Standing at each
vertex v of the polygon P, we look through the interior of the polygon P
and see which vertex of the polygon P is visible. Whenever we find that
a vertex u of the polygon P is visible from the vertex v, we add an edge
between the vertices v and u. Keeping doing this until no vertex of P is
visible from the vertex v, then we move to another vertex v’ of P and add
edges to those vertices that are visible from v/, an so on. Note that once
there is no vertex visible from a vertex v of P, then no vertex can become
a visible vertex from v later, since the only operation we are performing is
adding edges to the interior of the polygon P. Therefore, once we add edges
to a vertex v of P so that there is no vertex of P visible from v, we do not
have to come back and check the vertex v again. Moreover, if the interior
of the polygon P is not triangulated, then there must be a pair of vertices v
and u between which we can add a new edge e without edge-crossing. But
this implies that the vertex wu is still visible from the vertex v before we add
the new edge e. Thus, if we process all vertices of P such that from any
vertex v of P there is no visible vertex, then we must have triangulated the

TRIANGULATIONS 49

interior of the polygon P.

The above method is valid in principle for triangulating any PSLG. How-
ever, to find all visible vertices from a vertex of a general PSLG may be dif-
ficult and time-consuming. On the other hand, if the PSLG is a monotone
polygon, then the process above can be done very efficiently.

The following is the algorithm of triangulating a monotone polygon P.
The vertices of the polygon P are processed in the way described above and
in the ordering of decreasing y-coordinate. A stack K is used to store the
vertices of P that have been processed such that no processed vertices are
still visible from vertices in K but each vertex in K is still visible from some
unprocessed vertices of P.

Algorithm Triangulate-MonoP

Input: a monotone polygon P

Output: a triangulation of P

1. sort the vertices of P in decreasing y-coordinate: v(1),....,v(n);
2. Push(K, v(1)); Push(X, v(2)); /* K is a stack */

3. For (i = 3; i <= n; i++)

/* assume K = [K(1), K(2); ..., K(s)], where K(1) is on top */
3.1 If (v(i) is adjacent to K(s) but not to K(1))
wl = K[1];

While (K is not empty)
add edge [v(i), K(1)]; Pop(X);
Push(K, w1); Push(K, v(i));
3.2 Esle If (v(i) is adjacent to K(1) but not to K(s))
While ((K has > 1 vertex) & (K(2) is visible from v(i)))
add edge [v(i), K(2)]; Pop(K);
Push(X, v(i));
3.3 Else /* now v(i) must be adjacent to both K(1) and K(s) */
Pop(K) ;
While (K has > 1 vertex)
add edge [v(i), K(1)]; Pop(K);
Pop(K); STOP.

We first discuss the correctness of the algorithm. Steps 1-2 initialize the
configuration by setting a PSLG G3 that is the given monotone polygon P.
Also let Ps be the region (i.e., the polygon) of Gs. For each i, 3 < i < n,
on the given PSLG G; that has a region P;, and a given stack configuration
K;i = [K;(1),...,K;(s)] (where K;(1) is on the top of the stack), the i-th
execution of the For-loop in step 3 processes the vertex v (i) to construct the
PSLG Gjy1. We first prove, by induction on ¢, that for all 3 <i < n+41, the
PSLG G;, the polygon F;, and the stack K; satisfy the following conditions .

Properties of G;

1. the region P; is a monotone polygon, whose vertices consist of the vertices
in the stack K;, plus the vertices v(i), ..., v(n). The stack vertices
[K; (1), ...,K;(8)] make a monotone chain on the boundary of F;;

2. the stack K; contains at least two vertices, for 3 < i < n;

50 GEOMETRIC SWEEPING

3. a vertex v(j) not in the stack K; and with j < i is not visible from any
other vertex of Gj;
4. No two stack K; vertices are visible from each other in G;.

For i = 3, we have G3 = P5 being the given monotone polygon P, and
the stack K3 contains the first two vertices: K3(1)=v(2) and K3(2)=v(1).
It is easy to verify that in this case, all four conditions hold true.

Now assume inductively that conditions 1-4 hold true for G;, F;, and K;.
We prove the conditions for G411, Piy1, and K;41.

Suppose that step 3.1 is executed in the i-th execution of the For-loop
in step 3, then the vertex v(i) is adjacent to the bottom vertex K;(s) in
the stack K;, but is not adjacent to the top vertex K; (1) in K;. We first show
that in this case, all vertices in the stack K;, except K;(s), are visible from
v(i). For this, consider the segment g = [v(i), K;(s)]. Fix one end of g
at v(i), and slide the other end of g along the edge [K;(s),K;(s-1)] (by
induction, ¥; contains at least two vertices, and [K;(s), K;(s-1)] is an edge
of the monotone polygon P;), keeping the interior of the segment g entirely
in the interior of the polygon P; until the segment g hits a vertex v. Since
the vertex K; (s-1) has a y-coordinate larger than that of v (i), the segment
g cannot hit a vertex v(h) with A > i before it hits K; (s-1). Moreover, v
cannot be a vertex v(h) with h < ¢ that is not in the stack K;: by condition
3 inductively, such a v(h) is not visible from v(i). Thus, v must be a vertex
in the stack ;. If v is not K;(s-1), then v would be a vertex in K; that is
visible from K;(s), contradicting condition 4 by the inductive hypothesis.
Thus, v must be K;(s-1) so K;(s-1) is visible from v(i). Also note that
adding the edge [v(1),K; (s-1)] makes the vertex K; (s) not visible from any
other vertex in the PSLG, which makes the vertex K; (s) to satisfy condition
3. Now, similarly, using a segment that starts at the edge [v(i),K;(s-1)]
whose end at K;(s-1) moves along the edge [¥;(s-1),K;(s-2)], we can
prove that the vertex K; (s-2) is visible from v(i) so we can add the edge
[v(i),K;(s-2)] and make K; (s-1) invisible from any other vertex, and so
on. At the end of step 3.1, which has constructed the new PSLG G,
the stack K;41 contains two vertices K;11 (1) = v(h), and K;;.1(2) = K; (1),
and a new polygon P;y; is constructed whose vertices consist of the two
vertices in K;41 plus all vetices v(h) with h > ¢. Thus, all four conditions
are satisfied by G;11, P11, and K;y1.

If step 3.2 is executed in the i-th execution of the For-loop in step 3,
then the vertex v(i) is adjacent to the top vertex K;(1) in the stack X;,
but is not adjacent to the bottom vertex X;(s) in K;. Step 3.2 repeatedly
adds an edge [v(i),K;(2)] and pops the top vertex K; (1) out of K;, as long

TRIANGULATIONS 51

as the second top vertex K;(2) in K; is visible from v(i). Since K;(1) is
adjacent to both v(i) and K;(2), adding the edge [v(1),K;(2)] will block
the vertex K;(1) from being visible from any other vertex, making vertex
K; (1), which is popped out of the stack, to satisfy condition 3. Since the
While-loop in step 3.2 stops with at least one vertex in the stack K;, and
the vertex v(i) is pushed into the stack as a new stack vertex, the stack
K;11 will contain at least two vertices, satisfying condition 2. For condition
1, inductively, the vertices in the stack K; make a monotone chain and the
vertex v(i) has its y-coordinate smaller than that of all vertices in K;, thus,
pushing v (i) into the stack ensures that the vertices in the stack still make a
monotone chain, which, plus the vertices v(h) with h > 4, make a monotone
polygon P, 1, satisfying condition 1. Now the only remaining condition that
still needs to verify is condition 4. Let [K;+1(1),K;41(2),...,K;+1(s)] be
the stack configuration at the end of step 3.2, where K;;;(1)=v(i) is at
the top of the stack. If s=2, then condition 4 is automatically satisfied be-
cause [K;y+1(1),K;+1(2)] is an edge of P;1q. If s>2, then by the algorithm,
Ki+1(1)=v (i) is not visible from K; 1 (3). If K; 41 (1) is visible from K; 1 (h)
for some h>3, then pick such a K; 1 (h) with the smallest index h, and draw
a segment g=[K;1(1),K;+1(h)]. Fix the end K;y1(h) of the segment g
and slide the other end of g along the edge [K;y1(1),K;+1(2)], keeping the
interior of the segment g entirely in the interior of the polygon P; until the
segment g hits a vertex v. Therefore, the vertex v is visible from K;1q (h)
(v could be K;y1(2) but recall that h>3). However, the existence of the
vertex v causes a contradiction: (1) v cannot be a vertex v(j) with j>i
since the y-coordinate of K; 1 (h) is larger than that of K; 41 (1) and K;41(2);
(2) v cannot be a vertex v(j) with j<i but not in the stack because by
induction such a vertex is not visible from any other vertex; and (3) v can-
not be a vertex in the stack because by the definition, v is not K;11 (1) and
[Ki+1(2),...,Kiy1 (), ... ,Ki+1(s)] is a subchain of the original chain in
the stack K;, in which by the induction no two vertices are visible from each
other. This contradiction shows that the new stack vertex K;y; (1)=v(h)
cannot be visible from any other vertices in the stack K;;1. Moreover, by
induction on K;, no two vertices from [K;11(2),...,K;+1(s)], which are
vertices in K;, are visible from each other. This concludes that condition 4
is satisfied by the stack K;y1 and the PSLG G;41.

Note that the vertex v(i) has to be adjacent to at least one of the
vertices K; (1) and K;(s). Therefore, if steps 3.1 and 3.2 are not executed,
then the vertex v(i) must be adjacent to both K;(1) and K;(s) in the
monotone polygon P;. This implies that v(i) must be the lowest vertex in
the polygon P;, i.e., i=n (this fact uses condition 1 inductively). In this

52 GEOMETRIC SWEEPING

case, step 3.3 is executed. Since v(i) is adjacent to K;(s), as we proved
for the case for step 3.1, in the case of step 3.3, all vertices in the stack K;,
except now K; (1) and K; (s), are visible from v (i), and they will be popped
out of the stack K; and become invisible from any other vertices after the
corresponding edges are added. Note that in this case, condition 2 no longer
holds true because the stack K; 1 becomes empty.

This completes the proof that for all 7, 3 < i < n + 1, the PSLG G,
the polygon P;, and the stack K; satisfy conditions 1-4. In particular, when
i = n+1, by condition 3, no two vertices in the PSLG G, are visible from
each other. This means that the resulting PSLG G, is a triangulation of
the input monotone polygon P. This proves the correctness of the algorithm
Triangulate-MonoP.

The analysis of the algorithm is easier. Since the polygon P is monotone,
there are two vertices v, and v; of P with the largest and the smallest y-
coordinates, respectively. Moreover, the boundary of the polygon P can be
decomposed into two monotone chains

C:(u(]vul,"‘ ,Uk) and C/:(ué)?u/l’... 7u;1)

where ug = uf, = vp, and uy, = uﬁl = v; and the vertices in both chains C' and
C' are in decreasing y-coordinate ordering. We can merge the two chains C'
and C’ in linear time to obtain the list [v(1),v(2),...,v(n)] of vertices
of the polygon P sorted by decreasing y-coordinates. Therefore, stepl of the
algorithm takes linear time.

Within the loop of step 3, we add each new edge in constant time. Since
the final triangulation G,,41 is a planar graph that has at most O(n) edges,
the total time for adding new edges is bounded by O(n). Moreover, since
each vertex of P is pushed into then popped out the stack K exactly once,
the total time of steps 2-3 is also bounded by O(n).

We close this subsection with the conclusion that the problem of trian-
gulating a monotone polygon can be solved in linear time.

4.4.2 Triangulating a general PSLG

Now we consider the problem of triangulating a general PSLG. Let G be a
general PSLG. If each region of G is a monotone polygon, we can use the fol-
lowing algorithm to triangulate G: first construct all regions of G, which are
monotone polygons P;, P, ..., P; then triangulate each monotone polygon
P; by the algorithm Triangulate-MonoP given in the last subsection.
Constructing the regions Py, ..., P of the PSLG G can be done using the
algorithm Trace-Region given in section 2.4.2, which constructs a polygon

TRIANGULATIONS 53

P; in time O(s;), where s; is the size of the polygon P;, i.e., the number
of sides of the polygon. To be more precise, the time for constructing the
polygon P; is bounded by c-s; for a fixed constant ¢. Therefore, constructing
all polygons Py, ..., P. of the PSLG G takes time bounded by

c-si+--+ce-sp=c(s14+-+5)=0(s1+ -+ sp).

Since each edge of G is used by exactly two regions of the PSLG G in their
boundary, s;+- - -+, is twice the number of edges of G, which is bounded by
O(n) since G is a planar graph. That is, the regions of G can be constructed
in time (n). Now we triangulate each region P; of G using the algorithm
Triangulate-MonoP in subsection 4.4.1, which triangulates the monotone
polygon P; in time O(s;), i.e., in time bounded by d - s; for a fixed constant
d. Therefore, triangulating all regions of G takes time

dosi4-+d sp=d(si++5)=0(s1 4+ 5) = O(n).

It is easy to see that putting all these triangulated regions together to get a
triangulation of the PSLG G can also be done in time O(n). As a result, we
conclude that if all regions of a PSLG G are monotone polygons then the
triangulation of G can be done in linear time.

Therefore, the problem of triangulating a general PSLG G is reduced to
the problem of converting the PSLG G into a PSLG G’ such that all regions
of G’ are monotone polygons. Without loss of generality, we suppose that
our PSLG G has no two points with the same y-coordinate (otherwise we
can achieve this by rotating the coordinate system slightly). Let us first
introduce some definitions.

Let G be a PSLG and let v be a vertex of G. An edge [u,v] is an upper
edge of v if the y-coordinate of u is larger than that of v, and an edge [w, v]
is a lower edge of v if the y-coordinate of w is smaller than that of v. A
vertex v of G is regular if either v is the vertex of G with the maximum or
the minimum y-coordinate or v has both upper edges and lower edges.

Definition A PSLG G is regular if every vertex of GG is regular.

Note that if G is a regular PSLG, then G must be connected. To see
this, suppose that G is not connected, then let v, and v; be the vertices
of the maximum y-coordinate for two different connected components of G,
respectively. Now both vy and v, have no upper edges, so one of them must
be an irregular vertex.

54 GEOMETRIC SWEEPING

Lemma 4.4.1 All regions of a reqular PSLG are monotone polygons.

PRrROOF. Suppose that G is a regular PSLG but a region P of G is not
a monotone polygon. Let v, be the vertex of P that has the largest y-
coordinate. Since P is a simple polygon and no other vertex of P has the
same y-coordinate as vy, when a horizontal straight line L is close enough
to the vertex vp, L intersects P at exactly two points. Because P is not
monotone, there must be some horizontal lines intersecting P at more than
two points. Let

ro = sup{r | the line y = r intersects P at more than two points.}

Let Lg be the horizontal straight line y = rg. There are two possible cases.

The line Ly intersects P at two points. Then since a slight moving down
of the line Ly would make the line intersect more than two points, there
must be a vertex v of P on the line Lg such that the vertex v has two lower
edges. Since moving Ly down by an arbitrarily small distance would make
Ly intersect P with more than two points, v is not vy,. However, this implies
that v has no upper edges since each vertex of P is incident to exactly two
edges of P. Thus, v is not a regular vertex and G is not a regular PSLG.

On the other hand, suppose that Lg intersects P at more than two points,
then a slight moving up the line Ly would make the line intersect exactly
two points of P. Thus one of those intersecting points of Ly and P must be a
vertex of P without upper edges. But this again contradicts the assumption
that G is regular.

Therefore, the region P must be a monotone polygon. Since P is an
arbitrary region of the PSLG G, this completes the proof of the lemma. [J

Therefore, the problem Triangulation for regular PSLGs can be solved in
linear time. In the next subsection, we will show that given a general PSLG
G, in time O(nlogn) we can convert G into a regular PSLG by adding edges
to G. Consequently, the problem Constrained Triangulation can be solved
in time O(nlogn).

Remark: The problem of triangulating a simple polygon had drawn signifi-
cant attention in the research in computational geometry. After much effort,
Chazelle [8] was eventually able to develop a (highly non-trivial) linear-time
algorithm for triangulating a general simple polygon. Since for a connected
PSLG G, the regions of G can be constructed in linear time, Chazelle’s lin-
ear time algorithm for simple polygons implies a linear-time algorithm for
triangulating a general PSLG in which all regions are simple polygons (note
that such a PSLG is necessarily connected).

TRIANGULATIONS 55

4.4.3 Regularization of PSLGs
We thereby have the following problem.

RegularizingPSLG
Given a general PSLG G, add edges to G so that the resulting
PSLG is regular.

Intuitively, the process of regularizing a PSLG is simple: we add an
upper edge to a vertex if it does not have an upper edge, and add a lower
edge to a vertex if it does not have a lower edge. The problem is, how do
we add the edges so that edge-crossing is avoided. Therefore, when we are
working on a vertex of a PSLG G, we should have enough information about
the local environment of the vertex. But how do we maintain and update
the information about the local environment efficiently when we move from
one vertex to another vertex in the PSLG G?

Again, the plane sweeping technique helps. Let V' = {vy,vg,--- ,v,} be
the vertex set of the PSLG G. Without loss of generality, suppose that no
two vertices in V have the same y-coordinate.! We first sort the vertices in
V by their y-coordinates. Then we sweep the plane by a horizontal line from
the bottom up. The sweeping stops at each vertex of G and check if the
vertex has an upper edge. If the vertex does not have an upper edge, then we
record it and will add an upper edge to it later when we find a proper vertex
with a larger y-coordinate. This process will ensure that all vertices, except
the vertex of the maximum y-coordinate, have upper edges. We then sweep
the plane one more time from the top down to add lower edges for those
vertices that have no lower edges, except the vertex with the minimum y-
coordinate. After these two sweeping processes, every vertex has at least one
upper edge (except for the vertex with the maximum y-coordinate) and at
least one lower edge (except for the vertex with the minimum y-coordinate).
Thus the PSLG becomes regular. We discuss the bottom-up sweeping in
detail. The top-down sweeping can be handled similarly.

Without loss of generality, suppose that the list {vy,ve, -+ ,v,} is the
sorted list of the vertices of the PSLG G in ascending y-coordinates. Con-
sider the horizontal sweeping line L that passes through a vertex v; of G,
where ¢ < n. The sweeping line L partitions the PSLG G into three parts
G1, Go2, and G3: (1) the structure G is the “past history” containing those
vertices of G that are below the line L and have upper edges, and those edges
of G that are entirely below the line L; (2) the structure G is the “current
status” containing the vertices of G that are either on the line L or below

In fact, with a minor modification, our algorithms will also work for the general case.

56 GEOMETRIC SWEEPING

the line L but have no upper edges, and those edges of G that intersect the
line L; and (3) the structure G5 is the “unknown future” containing the ver-
tices and edges of G that are entirely above the line L. The elements in G
are “done” elements that we have seen and we know that they do not need
further processing, the elements in GGy are the “current” elements that we
are processing, and the elements in GG3 are “unknown” elements that have
not been seen during the bottom-up sweeping. Therefore, the process of the
plane sweeping is a process of updating the current status of the structure
G2 when we pass through each vertex of the PSLG G. Note that it is easy
to see that during the sweeping between two consecutive vertices in the list
{v1,v2, -+ ,v,}, the status of the structure G is invariant. The status of
G2 only changes when we pass through a vertex of the PSLG G. This is
the reason why our sweeping is discrete (i.e., the sweeping only stops at the
vertices of G and updates the current status of Ga).

We use a data structure Dy to represent the current status of the struc-
ture Ga, which contains all edges in currently intersecting the sweeping line
L, ordered from left to right (i.e., sorted by the x-coordinates of their in-
tersecting points with the line L). We require that between two consecutive
edges e; and ey in Do, there is at most one “hung vertex”, i.e., a vertex v
that is below the sweeping line L and has no upper edges, here “between
e1 and e2” means that if we draw a horizontal line through v, the line will
intersect e; and eg on the two sides of v. This condition can be maintained,
as follows: (1) if a second hung vertex v’ is added between the edges e; and
e2, then we add an edge [v,v'] between v’ and the first hung vertex v, which
gives the first hung vertex v an upper edge thus unhang v; and (2) if the
sweeping line L passes over the upper end v” of one of the edges e; and es,
then we add an edge [v,v”] between v” and the hung vertex v to give v an
upper edge and unhang v. The information about the hung vertices between
consecutive edges in the data structure Dy is also recorded in Dy with the
corresponding edges so that for an edge in D, we can directly read if there
are vertices hung on the left and/or the right of the edge.

The status of the structure Gs recorded in Ds can be dynamically up-
dated in the following way when we are passing through a vertex v;. Assume
that D5 records the status of G just before L hits the vertex v;. Now move
the line L up until it hits v;. Let e; be the edge whose intersection with L
is just left to the vertex v; on L, and let e, be the edge whose intersection
with L is just right to the vertex v; on L (note that in certain cases the
edges e; and e, may not exist). Moreover, let ea, ..., e,—1 be the lower
edges incident on v; in counterclockwise ordering. Note that before the line
L hits the vertex v;, the edges ej, ea, ..., e,—1, €, are consecutive in the

TRIANGULATIONS 57

structure Do, ordered from left to right. We then check if there is a hung
vertex between each pair [en, ep11] of edges, for h = 1,...,r — 1. If there
is such a hung vertex vy, between [ep, ep11], then we add a new edge [v;, vp]
between v; and vy,. Note that since the vertex vy is the unique hang vertex
between the consecutive edges ep and ep1 1 on L and v; is an upper end of
one of these two edges, adding the edge [v;, vy] cannot cause edge crossings.
Moreover, since the y-coordinate of v; is larger than that of vy, the new edge
[vs, vp] is an upper edge for vy, thus unhangs v,. Now, after the sweeping
line L passes over the vertex v;, all lower edges of v; will no longer belong
to G2. Thus we delete all of them from the data structure Dy (so the edges
e1 and e, become adjacent in Ds). On the other hand, all upper edges inci-
dent to v; now belong to the structure Gs so we insert all of them into the
data structure Dy (they will appear between e; and e, in Ds). If v; has no
upper edges, then v; will become hung between the edges e; and e, (they
are now adjacent in Ds). This completes the update of Do for the status of
the structure Gy when the sweeping line L passes through the vertex v;.
Thus, the data structure D3 is initiated as an empty set. The sweeping
line L goes from vertex vy, from the bottom up until meets the vertex v,,
with the data structure Dy dynamically changed when the sweeping line L
passes over each vertex, as described above. We will eventually finish adding
upper edges to the vertices of the PSLG G. For any vertex v; with no upper
edges, the above process will hang v; between two consecutive edges e; and
ei+1 in Dy when the sweeping line passes through v;. It is guaranteed that
the vertex v; will get unhung later: either the sweeping line L will hit a
vertex v; with j > ¢ such that v; is also between e; and e;;1 while e; and
e;+1 remain adjacent in Do so v; is still hung between e; and e;y1, or the
sweeping line L hits the upper end of one of edges e; and e;y1. In either
case, the above process will add an upper edge to v; and unhang v;. Thus,
after this process, each vertex of G, except v,, has at least one upper edge.
To make the above process efficient, we need the data structure Dy to
support the following operations efficiently: (1) keeping a list Sy for the
edges in G2, sorted by the x-coordinates of their intersecting points with
the sweeping line L; (2) for a given vertex v;, finding the sublist T; =
[e1,e2,...,e.] of Sg such that es, ..., e,_1 are the edges in Gy that are
incident to v;; and (3) inserting edges into G2 and deleting edges from G.
We can use a 2-3 tree for the data structure Ds. Thus, the edges in
G5 are sorted in Dy increasingly by the x-coordinates of their intersecting
points with the sweeping line L at its current position. On a given vertex
v; = (x4,9;), we can make the sweeping line L as y = y; and search in the
2-3 tree Do for = x;. This will collect all lower edges of v;: [ea,...,e,_1]

58 GEOMETRIC SWEEPING

of v;, from which it is also easy to find the edge e; left to es and the edge e,
right to e,_; in Dy. In particular, the desired list T; = [e1, eg, ..., ;] can be
constructed in time O(rlogn). Finally, the 2-3 tree Dy supports insertion
and deletion operations in time O(logn) per operation.

The following algorithm is based on the above discussion.

Algorithm Add-UpperEdges
Input: a PSLG G of n vertices
Output: a PSLG G’, obtained by adding edges to G such that every

vertex of G’ (except the highest one) has upper edges.
1. sort vertices of G in increasing y-coordinates: v(1),....,v(n);
2. D2 = empty; /* D2 is a 2-3 tree */
3. If (v(1) has upper edges)

insert the upper edges of v(1) into D2;
Else hang v(1);
4. For (i = 2; i <= n; i++)
.1 find the sublist e(1),...,e(r) in D2, where e(2),....,e(r-1)
are the lower edges of v(i);

4.2 For (h =1; h < r; h++)

If (there is a hung vertex v(h) between e(h) and e(h+1))

add a new edge [v(h), v(i)]; unhang v(h);

4.3 delete the edges e(2),, e(r-1) from D2;
4.4 If (v(i) has upper edges)

insert the upper edges of v(i) into D2;

Else if (i < n)
hang v(i) between the edges e(1) and e(r).

IS

We analyze the complexity the algorithm. Step 1 can be done in time
(nlogn) by any optimal sorting algorithm. Since a PSLG of n vertices has
only O(n) edges, the 2-3 tree D2 has at most O(n) leaves. In the algorithm,
each edge of the PSLG is inserted into D2 only once (when it is an upper edge
for a vertex, in steps 3 and 4.4), and deleted from D2 once (when it becomes
a lower edge of a vertex, in step 4.3). Moreover, the algorithm spends
time O(logn) per edge when searching the edge list e(1),e(2),...,e(x)
in step 4.1, and time O(r) on processing the hung vertices in step 4.2. In
summary, the algorithm spends time O(logn) on each edge of the PSLG.
Since a PSLG of n vertices has O(n) edges, we conclude that the algorithm
Add-UpperEdges runs in time O(nlogn).

Similarly, we can add lower edges to a PSLG in time O(nlogn). This
shows that we can regularize a PSLG of n vertices in time O(nlogn).

Combining this result with the results of subsections 4.4.1-4.4.2, we con-
clude with the following theorem.

Theorem 4.4.2 The problem Constrianed Triangulation can be solved in
time O(nlogn).

