
Computational Geometry:

Methods and Applications

Jianer Chen

Department of Computer Science & Engineering
Texas A&M University

January 12, 2023



2



Chapter 1

Introduction

Geometric objects such as points, lines, and polygons are the basis of a
broad variety of important applications and give rise to an interesting set
of problems and algorithms. The name geometry reminds us of its earliest
use: for the measurement of land and materials. Today, computers are
being extensively to solve larger-scale geometric problems. Over the past
few decades, a set of tools and techniques has been developed that takes
advantage of the structure provided by geometry. This discipline is known
as Computational Geometry.

The discipline was named and largely started around later part of 1970’s
by Shamos, whose Ph.D. thesis attracted considerable attention. After a
decade of development the field came into its own in 1980s, when three com-
ponents of any healthy discipline were realized: a textbook, a conference, and
a journal. Preparata and Shamos’s book Computational Geometry: An In-
troduction [23], the first textbook solely devoted to the topic, was published
at about the same time as the first ACM Symposium on Computational
Geometry was held, and just prior to the start of a new Springer-Verlag
journal Discrete and Computational Geometry. The field is currently thriv-
ing. Since 1985, several texts, collections, and monographs have appeared
[1, 10, 18, 20, 26, 27]. The annual symposium has attracted over 100 papers
and several hundreds of attendees steadily. There is evidence that the field
is broadening to touch geometric modeling and geometric theorem proving.
Perhaps most importantly, students who obtained their Ph.D.s in computer
science with theses in computational geometry have graduated, obtained
positions, and are now training the next generation of researchers.

Computational geometry is of practical importance because Euclidean
space of two and three dimensions forms the arena in which real physical

3



4 INTRODUCTION

objects are arranged. A large number of application areas such as pattern
recognition [29], computer graphics [19], image processing [22], operations
research, statistics [4, 28], computer-aided design, robotics [26, 27], etc.,
have been the incubation bed of the discipline since they provide inherently
geometric problems for which efficient algorithms have to be developed. A
large number of manufacturing problems involve wire layout, facilities lo-
cation, cutting-stock and related geometric optimization problems. Solving
these efficiently on a high-speed computer requires the development of new
geometrical tools, as well as the application of fast-algorithm techniques,
and is not simply a matter of translating well-known theorems into com-
puter programs. From a theoretical standpoint, the complexity of geometric
algorithms is of interest because it sheds new light on the intrinsic difficulty
of computation.

In this book, we concentrate on four major directions in computational
geometry: the construction of convex hulls, proximity problems, searching
problems and intersection problems.



Chapter 2

Algorithmic Foundations

The analysis and design of computer algorithms has been one of the most
thriving endeavors in computer science. The fundamental works of Knuth
[14] and Aho-Hopcroft-Ullman [2] have brought order and systematization
to a rich collection of isolated results, conceptualized the basic paradigms,
and established a methodology that has become the standard of the field.
It is beyond the scope of this book to review in detail the material of those
excellent texts, with which the reader is assumed to be reasonably familiar.
It is appropriate, however, at least from the point of view of terminology,
to briefly review the basic components of the language in which computa-
tional geometry will be described. These components are algorithms and
data structures. Algorithms are programs to be executed on a suitable ab-
straction of actual “von Neumann” computers; data structures are ways
to organize information, which, in conjunction with algorithms, permit the
efficient and elegant solution of computational problems.

2.1 The computational model

Many formal models of computation appear in the literature. There is no
general consensus as to which of these is the best. In this book, we will adopt
the most commonly-used model. More specifically, we will adopt random
access machines (RAM) as our computational model.

Random access machine (RAM)

A random access machine (RAM) models a single-processor computer with
a random access memory.

5



6 ALGORITHMIC FOUNDATIONS

A RAM consists of a read-only input tape, a write-only output tape, a
program and a (random access) memory. The memory consists of registers
each capable of holding a real number of arbitrary precision. There is also
no upper bound on the memory size. All computations take place in the
processor. A RAM can access (read or write) any register in the memory in
one time unit when it has the correct address of that register.

The following operations on real numbers can be done in unit time by a
random access machine :

1) Arithmetic operations: ∗, /, +, −, log, exp, sin.
2) Comparisons
3) Indirect access

2.2 Complexity of algorithms and problems

The following notations have become standard:

• O(f(n)) : the class C1 of functions such that for any g ∈ C1, there is a
constant cg such that f(n) ≥ cgg(n) for all but a finite number of n’s.
Roughly speaking, O(f(n)) is the class of functions that are at most
as large as f(n).

• o(f(n)) : the class C2 of functions such that for any g ∈ C2,
limn→∞ g(n)/f(n) = 0. Roughly speaking, o(f(n)) is the class of
functions that are asymptotically smaller than f(n).

• Ω(f(n)) : the class C3 of functions such that for any g ∈ C3, there is
a constant cg such that f(n) ≤ cgg(n) for all but a finite number of
n’s. Roughly speaking, Ω(f(n)) is the class of functions which are at
least as large as f(n).

• ω(f(n)) : the class C4 of functions such that for any g ∈ C4,
limn→∞ f(n)/g(n) = 0. Roughly speaking, ω(f(n)) is the class of
functions that are asymptotically larger than f(n).

• Θ(f(n)) : the class C5 of functions such that for any g ∈ C5, g(n) =
O(f(n) and g(n) = Ω(f(n)). Roughly speaking, Θ(f(n)) is the class
of functions which are of the same order as f(n).

Complexity of algorithms

Let A be an algorithm implemented on a RAM. If for an input of size n, A
halts after m steps, we say that the running time of the algorithm A is m



DATA STRUCTURE 7

on that input.

There are two types of analyses of algorithms: worst case and expected
case. For the worst case analysis, we seek the maximum amount of time used
by the algorithm for all possible inputs. For the expected case analysis we
normally assume a certain probabilistic distribution on the input and study
the performance of the algorithm for any input drawn from the distribu-
tion. Mostly, we are interested in the asymptotic analysis, i.e., the behavior
of the algorithm as the input size approaches infinity. Since expected case
analysis is usually harder to tackle, and moreover the probabilistic assump-
tion sometimes is difficult to justify, emphasis will be placed on the worst
case analysis. Unless otherwise specified, we shall consider only worst case
analysis.

Definition Let A be an algorithm. The time complexity of A is O(f(n)) if
there exists a constant c such that for every integer n ≥ 0, the running time
of A is at most c · f(n) for all inputs of size n.

Complexity of problems

While time complexity for an algorithm is fixed, this is not so for problems.
For example, Sorting can be implemented by algorithms of different time
complexity. The time complexity of a known algorithm for a problem gives
us the information about at most how much time we need to solve the
problem. We would also like to know the minimum amount of time we need
to solve the problem.

Definition A function u(n) is an upper bound on the time complexity of
a problem P if there is an algorithm A solving P such that the running
time of A is u(n). A function l(n) is a lower bound on the time complexity
of a problem P if any algorithm solving P has time complexity at least l(n).

2.3 A data structure supporting set operations

A set is a collection of elements. All elements of a set are different, which
means no set can contain two copies of the same element.

When used as tools in computational geometry, elements of a set usually
are normal geometric objects, such as points, straight lines, line segments,
and planes in Euclidean spaces.



8 ALGORITHMIC FOUNDATIONS

We shall sometimes assume that elements of a set are linearly ordered
by a relation, usually denoted “<” and read “less than” or “precedes”. For
example, we can order a set of points in the 2-dimensional Euclidean space
by their x-coordinates.

Let S be a set and let u be an arbitrary element of a universal set of which
S is a subset. The fundamental operations occurring in set manipulation
include:

• Search(u, S): Is u ∈ S?

• Insert(u, S): Add the element u to the set S.

• Delete(u, S): Remove the element u from the set S.

When the universal set is linearly ordered, the following operations are also
important:

• Min(S): Report the minimum element of the set S.

• Split(u, S): Partition the set S into two sets S1 and S2, so that S1
contains all the elements of S that are smaller than or equal to u, and
S2 contains all the elements of S that are larger than u.

• Splice(S, S1, S2): Assuming that all elements in the set S1 are smaller
than any element in the set S2, form the ordered set S = S1 ∪ S2.

We will introduce a special data structure: 2-3 trees, which represent
sets of elements and support the above set operations efficiently.

Definition A 2-3 tree is a tree such that each non-leaf node has two or
three children, and every path from the root to a leaf is of the same length.

The following theorem can be proved using induction on n, and the proof
is left to the reader.

Theorem 2.3.1 A 2-3 tree of n leaves has height bounded by log n.

A linearly ordered set of elements can be represented by a 2-3 tree by
assigning the elements to the leaves of the tree in such a way that for any
non-leaf node v of the tree, all elements stored in the first child of v are less
than any elements stored in the second child of v, and all elements stored
in the second child of v are less than any elements stored in the third child
of v (if v has a third child).



DATA STRUCTURE 9

Each non-leaf node v of a 2-3 tree has two or three children, which will
be named child1(v), child2(v), child3(v), respectively. The node v also keeps
three values for the corresponding subtrees:

• l(v) : the largest element stored in the subtree rooted at child1(v).

• m(v) : the largest element stored in the subtree rooted at child2(v).

• h(v) : the largest element stored in the subtree rooted at its child3(v)
(if child3(v) exists).

Remark. Strictly speaking, the third value h(v) is not needed. All algo-
rithms can be implemented without the value h(v), and without increasing
the time complexity. However, we suggest to keep the third value in an
implementation, which will simplify certain implementation details.

2.3.1 Searching

The algorithm to search an element in a 2-3 tree is given as follows, where
r is the root of the 2-3 tree, and x is the element to be searched in the tree.

Algorithm Search(r, x)

1. If (r is empty) return "NO";

2. If (r is a leaf node) return (value(r) == x);

3. If (l(r) >= x) return Search(child1(r), x);

Else If (m(r) >= x) return Search(child2(r), x);

Else If (r has a third child) return Search(child3(r), x);

Else return "NO".

Since the height of a 2-3 tree is O(log n), and the algorithm simply follows
a path in the tree from the root to a leaf, and spends time O(1) on each
level, the time complexity of the algorithm Search is O(log n), where n is
the number of leaves in the tree.

2.3.2 Minimum and Maximum

Given a 2-3 tree T we want to find out the minimum element stored in
the tree. Recall that in a 2-3 tree the elements are stored in leaf nodes
in ascending order from left to right. Therefore the problem is reduced to
going down the tree, always selecting the left most link, until a leaf node is
reached. This leaf node should contain the minimum element stored in the
tree. Evidently, the time complexity of this algorithm is O(log n) for a 2-3
tree with n leaves.



10 ALGORITHMIC FOUNDATIONS

Algorithm Min(r)

1. If (r is empty) return failure;

2. If (r is a leaf) return value(r);

Else return Min(child1(r)).

Similarly, the maximum element stored in a 2-3 tree can be found in
time O(log n).

2.3.3 Insertion

To insert a new element x into a 2-3 tree T rooted at r, we apply a recursive
algorithm that dose two things: (1) insert x into the tree T rooted at r; and
(2) report whether this insertion splits the tree T rooted at r into two 2-3
trees.

If the 2-3 tree T has at most one leaf, then the job is easy: (1) if T has
no leaf (i.e., T represents an empty set), then we simply make a 2-3 tree
that consists of a single node, which is both the root and the leaf of the tree,
with a value x. (2) if T has only one leaf of value y, then the tree T is a
single-node tree, inserting x into T makes a two-leaf tree, whose values are
x and y, respectively, and the leaves are ordered properly.

Now suppose that the 2-3 tree T has a height at least 1 with at least
two leaves, then we proceed at first as if we were searching x in the tree T .
However, at the level just above the leaves, we start our insertion operation
recursively. In general, suppose that we want to add a new child w to a
node v in the 2-3 tree T . If v has only two children, we simply make w a
new child of v, placing the children in the proper order and updating the
information of the node v.

Suppose, however, that v already has three children v1, v2, and v3. Then
w would be the fourth child of v. We cannot have a node with four children
in a 2-3 tree, so we split the node v into two nodes, which we call v and v′.
With the new node v′, we can let the first two of {v1, v2, v3, w} (in terms
of the linear order) be children of v, and let the rest two be children of v′.
Now, the node v′ is the root of a subtree and should be added as a new child
to the parent of v. Thus, the operation now can be recursively done at the
level of the parent of v.

One special case occurs when we wind up splitting the root. In that case
we create a new root, whose two children are the two nodes into which the
old root was split. This is how the number of levels in (i.e., the height of) a
2-3 tree increases.

The above discussion is implemented as the following algorithms, where
r is the root of the 2-3 tree to which the element x is to be inserted.



DATA STRUCTURE 11

Algorithm Insert(r, x)

1. If (the tree rooted at r has < 2 leaves)

process directly; return;

2. AddLeaf(r, x, r’);

3. If (r’ != NULL)

create a new node v; let r and r’ be children of v; r = v.

The procedure AddLeaf(r,x,r’) above is implemented by the following
recursive algorithm, which inserts a new element x to the 2-3 tree rooted at
r. Moreover, if this insertion causes splitting the node r due to exceeding
the number of children, then a new node r′ is created to take two children
from r. Therefore, if r′ is not empty when the procedure returns, then r
and r′, respectively, are the roots of two 2-3 trees of the same height.

Algorithm AddLeaf(r, x, r’) /* the node r is not a leaf */

1. r’ = NULL;

2. If (r is a parent of leaves)

If (r has 2 children) add x as a new child of r;

Else /* r has 3 children */

order x and the three children of r in the linear order;

let the first two be children of r; and the rest two be children of r’;

return;

3. If (l(r) >= x) v = child1(r);

Else If (m(r) >= x or child3(r)==NULL) v = child2(r);

Else v = child3(r);

4. AddLeaf(v, x, v’);

5. If (v’ == Null) return;

6. If (v’ != NULL and r has 2 children) add v’ as a new child of r;

Else /* r has 3 children and v’ is not NULL */

order v’ and the three children of r in the linear order;

let the first two be children of r; and the rest two be children of r’;

return.

Analysis: Clearly, the running time of the algorithm Insert is dominated
by that of the procedure AddLeaf, which at each level of the 2-3 tree spends
constant time (see steps 1-3, 5-6 of the procedure Addson). Since a 2-3 tree
with n leaves has a height bounded by log n, we conclude that the algorithm
Insert runs in time O(log n).

2.3.4 Deletion

When we delete a leaf from a 2-3 tree, we may leave its parent v with only
one child. If v is the root, delete v and let its lone child be the new root.
Otherwise, let p be the parent of v. If p has another child, adjacent to v on
either the right or the left, and that child of p has three children, we can
transfer the proper one of those three to v. Then v has two children, and
we are done.



12 ALGORITHMIC FOUNDATIONS

If the children of p adjacent to v have only two children, transfer the
lone child of v to an adjacent sibling of v, and delete v. Should p now have
only one child, repeat all the above, recursively, with p in place of v.

Summarizing these discussions together, we get the algorithm Delete, as
shown below, where procedure Delete() is merely a driver for sub-procedure
Del() in which the actual work is done.

The variables done and 1son in Del() are boolean flags used to indicate
successful deletion and to detect the case when a node in the tree has only
one child, respectively.

In the worst case we need to traverse a path in the tree from root to a
leaf to locate the leaf to be deleted, then from that leaf node to the root,
in case that every non-leaf node on the path has only two children in the
original 2-3 tree T . Thus the time complexity of Delete algorithm for a 2-3
tree with n leaves is O(log n).

Algorithm Delete(r, x)

1. If (r == Null) return failure;

2. If (r is a leaf)

If (x == l(r)) r = Null; return;

Else return failure;

3. Del(r, x, done, 1son);

4. If (done == false) return failure;

5. If (1son == true) r = child1(r); return.

Algorithm Del(r, x, done, 1son)

1. done = true; 1son = false;

2. If (r is a parent of leaves) process properly and return;

/* i.e., delete x if it is in the tree; update done and 1son */

3. If (x <= l(r)) r’ = child1(r);

Else if (x <= m(r)) or (child3(r) == Null) r’ = child2(r);

Else r’ = child3(r);

4. Del(r’, x, done’, 1son’);

5. If (done’ == false) done = false; return;

6. If (1son’ == true)

If (r has at least 4 grandchildren)

reorganize the grandchildren of r so that each of r and its

children has either 2 or 3 children; return;

Else make r a 1-child node (with 3 grandchildren);

1son = true; return.

2.3.5 Splice

Splicing two trees into one big tree is a special case of the more general
operation of merging two trees. Splice assumes that all the keys in one of the
trees are larger than all those in the other tree. This assumption effectively
reduces the problem of merging the trees into “pasting” the shorter tree into
a proper position in the taller tree. “Pasting” the shorter tree is actually no



DATA STRUCTURE 13

more than performing an AddLeaf operation to a proper node in the taller
tree.

To be more specific, let T1 and T2 be two 2-3 trees which we wish to
splice into a single 2-3 tree T , where all keys in T1 are smaller than that in
T2. Furthermore, assume that the height of T1 is less than or equal to that
of T2 so that T1 is “pasted” to T2 as a left child of a leftmost node at the
proper level in T2. In the case where the heights are equal, the new tree T
can be easily constructed by letting T1 and T2 be the two children of the
root of T . Otherwise, a node v at a proper level in the tree T2 is found, and
T1 is inserted as the left child of v. Note that the level of the node v in the
tree T2 is given by (assume the root of T2 is at level 0):

height(T2)− height(T1)− 1

A more detailed description of the algorithm Splice is given as follows.

Algorithm Splice(T, T1, T2)

/* Assume all elements in T1 are less than any elements in T2 */

1. h1 = height of T1; h2 = height of T2;

2. If h1 == h2

create a root r for T and let T1 and T2 be children of r; return;

3. If h1 < h2 find the leftmost node v in T2 at level h2-h1-1,

add T1 as a new child of v; T = T2; return;

4. If h1 > h2 find the rightmost node v in T1 at level h1-h2-1,

add T2 as a new child of v; T = T1; return.

Note that steps 3-4 in the algorithm Splice may cause nodes in a 2-3 tree
with more than 3 children. Therefore, these steps should really be imple-
mented as recursive procedures that are similar to the algorithm AddLeaf

as gaven in the last subsection. However, instead of stopping at the level of
nodes that are parents of leaves, here the recursions stop when the height
of the taller tree is equal to 1 plus the height of the shorter tree.

The heights h1 and h2 of the trees T1 and T2, respectively, in step 1 can
be computed by tracing a path in the trees from the root to (any) leaf. Thus,
step 1 takes time O(log n). So the algorithm Splice runs in time O(log n).
If we already know the values of h1 and h2 so step 1 of the algorithm can
be omitted, then the algorithm follows a path in the taller tree from the
root to a node a level h, where h is the difference of the heights of the two
trees T1 and T2 minus 1. Thus, under this assumption, the running time
of the algorithm Splice will be O(h). We summarize the discussion in the
following theorem.

Theorem 2.3.2 The algorithm Splice takes time O(log n). If the heights
of the two trees are known, then the two trees can be spliced in time O(h),
where h is the difference of the heights of the two trees.



14 ALGORITHMIC FOUNDATIONS

2.3.6 Split

By splitting a given 2-3 tree T into two 2-3 trees, T1 and T2, at a given
element x, we mean to split the tree T in such a way that all elements in T
that are less than or equal to x go to T1 while the remaining elements in T
go to T2.

The idea is as follows: based on the way we search the element x in the
tree T , we in addition use two stacks to store, respectively, the subtrees to
the left and the subtrees to the right of the traversed path (splitting path).
Finally, the subtrees in each stack are spliced together to form the desired
trees T1 and T2. The algorithm is given as follows.

Algorithm Split(T, x, T1, T2)

/* Split T into T1 and T2 such that all elements in T1 are <= x, and all

elements in T2 are > x, where SL and SR are stacks.*/

1. let r be the root of T;

2. While r is not a leaf Do

If (x <= l(r))

If (r has a third child) SR <-- child3(r);

SR <-- child2(r);

r = child1(r);

Else If l(r) < x <= m(r)

SL <-- child1(r);

If (r has a third child) SR <-- child3(r);

r = child2(r);

Else /* x is in the third child of r */

SL <-- child1(r); SL <-- child2(r);

r = child3(r);

/* construct T1 */

3. T1 <-- SL;

4. While SL is not empty Do

t <-- SL;

Splice(T1, t, T1);

/* construct T2 */

5. T2 <-- SR;

6. While SR is not empty Do

t <-- SR;

Splice(T2, T2, t);

Note that we have omitted certain special cases in the above algorithm.
For example, if x is smaller than all elements in T, then we would have T1

= ∅ and T2 = T. Similarly we can handle the case where x is larger than
all elements in T. These cases can be tested and processed in time O(log n).

Suppose that the subtrees in the stack SL are τ1, τ2, . . ., τh, which were
pushed into the stack SL in this order. By the properties of a 2-3 tree,
we know that for all i, all elements in the subtree τi are smaller than any
element in the subtree τi−1. Since the subtrees in SL are popped out from
SL in the order of τh, . . ., τ2, τ1 and are spliced in the tree T1 (steps 3-



DATA STRUCTURE 15

4), we know that the splice operation Splice(T1, t, T1) is always valid.
Similarly, steps 5-6 are valid.

It is easy to see that the While loop in step 2 takes time O(log n). The
analysis for the rest of the algorithm is a bit more complicated. In each of
steps 3-4 and steps 5-6, we may need to splice more than a constant number
of subtrees. Thus, if we count the complexity of each splice as O(log n), we
would not be able to bound the running time of these steps by O(log n).

Note that the heights of the subtrees in the stacks SL and SR can be
easily computed while we traverse the path in T from its root in step 2 of
the algorithm Split. By taking advantage of this fact and Theorem 2.3.2,
we can have more precise analysis for the complexity of the algorithm Split.

The use of the stacks SL and SR to store the subtrees guarantees that the
height of a subtree closer to a stack top is less than or equal to the height of
the subtree immediately deeper in the stack. A crucial observation is that
since we splice shorter trees first (which are on the top part of the stacks),
the difference between the heights of two trees to be spliced is always very
small. In fact, the total time spent on splicing all these subtrees is bounded
by O(log n). We give a formal proof as follows.

Assume before we start step 4, the subtrees stored in the stack SL are

τ1, τ2, · · · , τr, (2.1)

in the order from the top to the bottom in the stack SL. For a 2-3 tree τ ,
denote by ht(τ) the height of τ . According to the algorithm Split, we have

ht(τ1) ≤ ht(τ2) ≤ · · · ≤ ht(τr)

and no three consecutive subtrees in the stack have the same height. Thus,
we can partition the sequence (3.1) into non-empty “segments” such that
each segment contains subtrees of the same height in the sequence:

s1, s2, · · · , sq

Each si either is a single subtree or consists of two consecutive subtrees of
the same height in sequence (3.1). Moreover, q ≤ log n. Let ht(si) be the
height of the subtrees contained in the segment si. We have

ht(s1) < ht(s2) < · · · < ht(sq) (2.2)

The While loop in Step 4 first splices the subtrees in segment s1 into

a single 2-3 tree T
(1)
1 , then recursively splices the 2-3 tree T

(i−1)
1 and the

subtrees in segment si into a 2-3 tree T
(i)
1 , for i = 2, . . . , q. We have the

following lemma.



16 ALGORITHMIC FOUNDATIONS

Lemma 2.3.3 For all 2 ≤ i ≤ q, ht(si−1) ≤ ht(T (i−1)
1 ) ≤ ht(si).

Proof. The inequality ht(s1) ≤ ht(T
(1)
1 ) is obvious since T

(1)
1 is obtained

by splicing subtrees in the segment s1. For i > 2, since T
(i−1)
1 is obtained

by splicing the tree T
(i−2)
1 and the subtrees in si−1, and the subtrees in si−1

have height ht(si−1). Thus, we must have ht(si−1) ≤ ht(T (i−1)
1 ).

Now consider the second inequality. The 2-3 tree T
(1)
1 is obtained by

splicing the subtrees in the segment s1, which contains at most two subtrees,

both of height ht(s1). Thus, the height of the 2-3 tree T
(1)
1 is at most

ht(s1)+1, which, by (2.2), is not larger than ht(s2). Thus, ht(T
(1)
1 ) ≤ ht(s2),

and the second inequality in the lemma holds true for the case i = 2.

Now for the case i > 2, consider the height ht(T
(i−1)
1 ) of the 2-3

tree T
(i−1)
1 . The tree T

(i−1)
1 is obtained by splicing the tree T

(i−2)
1 (note

i > 2) and the subtrees in the segment si−1. By the inductive hypothesis,

ht(T
(i−2)
1 ) ≤ ht(si−1). If the segment si−1 consists of a single subtree τ of

height ht(si−1), then splicing the tree T
(i−2)
1 of height at most ht(si−1) and

the tree τ of height ht(si−1) results in a 2-3 tree T
(i−1)
1 of height at most

ht(si−1) + 1, which, by (2.2), is not larger than ht(si).
Now suppose that the segment si−1 consists of two subtrees τ ′ and τ ′′

of height ht(si−1), and that T
(i−2)
1 is first spliced with τ ′ to result in a tree

τ+, then τ+ is spliced with τ ′′ to result in the tree T
(i−1)
1 . The tree τ+ can

have a height either ht(si−1) or ht(si−1) + 1 (note ht(T
(i−2)
1 ) ≤ ht(si−1)).

If the height of τ+ is ht(si−1), then splicing τ+ of height ht(si−1) and the

tree τ ′′ (also of height ht(si−1)) results in the tree T
(i−1)
1 of height at most

ht(si−1) + 1 ≤ ht(si). If the height of the tree τ+ is ht(si−1) + 1, then
the root of the tree τ+ must have only two children (see algorithm Insert,
step 3). Thus, splicing τ+ and τ ′′ will not increase the tree height (see

algorithm AddLeaf, step 6), so the tree T
(i−1)
1 resulted from the splicing has

height ht(si−1) + 1, again not larger than ht(si). This concludes that we

will always have ht(T
(i−1)
1 ) ≤ ht(si), so the lemma is proved.

Now we are ready for the following theorem

Theorem 2.3.4 The algorithm Split runs in time O(log n).

Proof. It is obvious that steps 1, 2, 3, and 5 of the algorithm Split take
time O(log n). Thus, to prove the theorem, we only need to prove that the
While loops in steps 4 and 6 of the algorithm take time O(log n).



GEOMETRIC GRAPHS 17

We first consider, for each i, the amount of time spent on splicing the

2-3 tree T
(i−1)
1 and the subtrees in the segment si to get the 2-3 tree T

(i)
1 .

By Lemma 2.3.3, ht(T
(i−1)
1 ) ≤ ht(si). If si is a single subtree τi, then by

Theorem 2.3.2, the time for splicing T
(i−1)
1 and τi to get T

(i)
1 is bounded by

a constant times ht(si)− ht(T (i−1)
1 ).

Now suppose that si consists of two subtrees τ ′i and τ ′′i , and that the

tree T
(i−1)
1 is first spliced with τ ′i that gives a tree τ+i , then the tree τ+i is

spliced with τ ′′i to get T
(i)
1 . The time for splicing T

(i−1)
1 and τ ′i to get τ+i is

again bounded by a constant times ht(si)−ht(T (i−1)
1 ). Moreover, the height

of the resulting tree τ+i is either h(si) or h(si) + 1. So splicing τ+i with τ ′′i
of height ht(si) takes only constant time. Therefore, in this case, the total

time to construct T
(i)
1 from T

(i−1)
1 and si is bounded by a constant times

ht(si)− ht(T (i−1)
1 ) + 1.

In summary, to construct the 2-3 tree T1 = T
(q)
1 , the time of the While

loop in step 4 of the algorithm Split (noticing that the tree T
(1)
1 can always

be constructed from s1 in constant time) is bounded by a constant times

q∑
i=2

(ht(si)− ht(T (i−1)
1 ) + 1)

By Lemma 2.3.3, ht(si−1) ≤ ht(T (i−1)
1 ) for all i. Thus, the time complexity

of the While loop in step 4 is bounded by a constant times

q∑
i=2

(ht(si)− ht(si−1) + 1) = ht(sq)− ht(s1) + (q − 1)

Since the quantities h(sq), h(s1), q are all bounded by log n, we conclude that
the While loop in step 4 takes time O(log n). The same conclusion applies
for step 6 of the algorithm, thus completing the proof of the theorem.

2.4 Geometric graphs in the plane

A graph G = (V,E) is planar if it can be embedded in the plane without edge
crossings. A planar embedding of a planar graph G = (V,E) is a mapping of
each vertex in V to a point in the plane and each edge in E to a simple curve
between the images of the two endpoints of the edge, so that no two images
of edges intersect except at their endpoints. The image of the mapping is



18 ALGORITHMIC FOUNDATIONS

called a geometric graph in the plane. If a geometric graph G is connected,
then it determines a subdivision of the plane, in which each region is also
called a face. There is an unbounded region in the subdivision that contains
the infinite point of the plane.

If all edges of a geometric graph G are straight-line segments in the plane,
G is called a planar straight-line graph (PSLG). For a connected PSLG, each
bounded region together with the edges of G that are on the boundary of
the region, forms a polygon in the plane. Our study is in general focused on
PSLGs. In most cases, we assume that the PSLGs are connected.

2.4.1 Euler’s formula

Let n, e and f denote the number of vertices, the number of edges, and the
number of regions (including the unbounded region) of a connected PSLG
G, respectively. The famous Euler’s formula relates these parameters by

n− e+ f = 2.

if we have an additional property that each vertex has degree at least 3
then we can prove the following relations.

n ≤ 2e/3 (2.3)

f ≤ 2e/3 (2.4)

e ≤ 3f − 6 (2.5)

e ≤ 3n− 6 (2.6)

n ≤ 2f − 4 (2.7)

f ≤ 2n− 4 (2.8)

To see relation (2.3), observe that each vertex has degree at least 3, and each
edge contributes exactly 2 to vertex degrees, one for each of its endpoints.
Thus, the sum of vertex degrees is equal to 2e and is at least as large as 3n,
which gives (2.3). Similarly, relation (2.4) is derived from the observation
that each edge has two edge sides that are used on region boundaries, while
each region uses at least three edge sides on its boundary. To see relation
(2.5), we start with Euler’s formula e = n + f − 2, and apply inequality
(2.3), which gives e/3 ≤ f − 2 thus (2.5). The relation (2.6) is obtained
similarly using Euler’s formula and inequality (2.4). Finally, relation (2.7)
comes from (2.3) and (2.5), and relation (2.8) comes from (2.4) and (2.6).

Thus, for planar graphs, the number of vertices, the number of edges,
and the number of regions are linearly related. This is very different from
general graphs, where a graph of n vertices may have up to n(n−1)/2 edges.



GEOMETRIC GRAPHS 19

tv1

tv2 tv3






















e1

J
J
J
J
J
J
J
J
J
J

e2

e6

t
v4
�

�
�
�

�
��

e4

Q
Q
Q
Q
Q
QQ

e5

e3
f1 f2

f3

f4

Figure 2.1: A planar embedding of K4

2.4.2 Doubly connected edge list (DCEL)

Consider a planar embedding I of the complete graph K4, as depicted in
Figure 2.1. What information should we keep for this embedding? Of course,
the vertices and edges of K4 should be recorded. Moreover, it is necessary to
keep the information about the regions of the embedding I. To represent the
information of a region, we must know what is the edge sequence when we
traverse the boundary of the region. For example, suppose that in Figure 2.1
we are traversing the boundary of region f3 from vertex v2 to vertex v4 along
edge e4 (thus, the region is on the right side when we traverse). When we
reach vertex v4, we must know what is the next edge on the boundary of f3
(here this should be edge e5). From the figure, we can see that the next edge
e5 must be the next edge obtained by rotating the current traversed edge e4
counterclockwise around the vertex v4. Thus, to get the region boundaries,
we must know the cyclic ordering for the edges incident on each vertex of
the embedding I.

The doubly connected edge list (DCEL) is an efficient data structure for
representing a PSLG. The main component of DCEL for a PSLG G is the
edge nodes. There is a one-to-one correspondence between the edges of G
and edge nodes in the corresponding DCEL. An edge node consists of four
information fields V1, V2, F1 and F2, and two pointer fields P1 and P2. The
fields V1 and V2 contain the starting vertex and ending vertex of the edge,
respectively (so we give each edge of the PSLG G an orientation, which
can be defined arbitrarily). The fields F1 and F2 contain the names of the
regions which lie, respectively, to the left and right of the edge oriented from
V1 to V2. The pointer P1 (resp. P2) points to the edge node for the first
edge encountered after the edge (V1, V2) when one proceeds counterclockwise
around V1 (resp. V2). Therefore, the edge P1 is the edge following the edge



20 ALGORITHMIC FOUNDATIONS

(V1, V2) at the vertex V1, while the edge P2 is the edge following the edge
(V1, V2) at the vertex V2 in the embedding of G.

The following is the DCEL for the PSLG given in Figure 2.1.

V1 V2 F1 F2 P1 P2

e1 v2 v1 f4 f1 e6 e3
e2 v1 v3 f4 f2 e1 e5
e3 v1 v4 f2 f1 e2 e4
e4 v4 v2 f3 f1 e5 e1
e5 v3 v4 f3 f2 e6 e3
e6 v2 v3 f3 f4 e4 e2

Note that the space used by a DCEL to represent a PSLG is linear to
the number of edges of the PSLG.

Suppose that the vertices of a PSLG G are v1, . . ., vn, and that the
regions of G are f1, . . ., fm. We use two additional arrays HV [1..n] and
HF [1..m] for the DCEL of G, where for each i = 1, · · · , n, HV [i] points
to an edge node in the DCEL such that one edge end of the corresponding
edge is vi, and for h = 1, · · · ,m, HF [h] points to an edge node in the DCEL
such that the corresponding edge is on the boundary of the region fh, .

Using the DCEL of a PSLG G, we can efficiently traverse the bound-
ary edges of a region of G (in the order in which the edges appear in the
traversing) or the edges incident on a vertex of G (in the cyclic order of
the edges around the vertex). The following is an algorithm for traversing
the boundary of a region when the DCEL of G is given. The algorithm for
traversing the edges incident on a vertex of G can be given similarly.

Algorithm Trace-Region(i)

/* Trace the boundary edges of the region i. */

1. e = HF[i];

2. e’ = e;

3. If (DCEL[e][F1]==i)

e = DCEL[e][P1];

Else e = DCEL[e][P2];

4. While (e <> e’) Do

If (DCEL[e][F1]==i)

e = DCEL[e][P1]

Else e = DCEL[e][P2];

For example, if we start with HF[3] = 4, and use the DCEL given above
for the planar imbedding of the complete graph K4 in Figure 2.1, we will
get the boundary for region f3 as [e4, e5, e6].

It is easy to see that the algorithm Trace-Region spends constant time
on each edge when traversing the region boundary of a region. Therefore,



GEOMETRIC GRAPHS 21

the time complexity of the algorithm Trace-Region is O(h), where h is the
size of the region, i.e., the number of edges on the boundary of the region.

Note that if the rotation of the edges incident on each vertex of the PSLG
G is given in counterclockwise order in the DCEL for G, then the regions
are traversed clockwise by the algorithm Trace-Region (i.e., the region is
on the right side during the traversing). On the other hand, if the rotation
of the edges incident on each vertex of the PSLG G is given in clockwise
order in the DCEL for G, then the regions are traversed counterclockwise
by the algorithm Trace-Region (i.e., the region is on the left side during
the traversing). Moreover, it is easy to see that for a PSLG G, a DCEL for
G in which the rotation of the edges incident on each vertex of G is given
in counterclockwise order can be transformed in linear time into a DCEL
for G in which the rotation of the edges incident on each vertex of G is
given in clockwise order, and vice versa. The detailed implementation of
this transformation is left to the reader as an exercise.



22 ALGORITHMIC FOUNDATIONS


