
CSCE-608 Database Systems

Spring 2025

Instructor: Dr. Jianer Chen TA: Shahin John John Stella
Office: PETR 428 Office: PETR 445
Phone: 845-4259 Phone: (979) 575-5523
Email: chen@cse.tamu.edu Email: ivin-98@tamu.edu
Office Hours: MW 1:30 pm–3:00 pm Office Hours: TR 11:00 am–12:00 pm

Assignment #3 Solutions

1. Below are the statistics for four relations:

W(a, b): T(W) = 100, V (W, a) = 20, V (W, b) = 60;

X(b, c): T(X) = 200, V (X, b) = 50, V (X, c) = 100;

Y(c, d): T(Y) = 300, V (Y, c) = 50, V (Y, d) = 50;

Z(d, e): T(Z) = 400, V (Z, d) = 40, V (Z, e) = 100.

Give the dynamic programming table entries that evaluates all join orders allowing:

a) All trees.

Answer. Below is the dynamic programming table entries for all trees:

Relation Subset Size Cost Va Vb Vc Vd Ve Best Plan
{W,X} 334 0 20 50 100 W▷◁X
{W,Y} 30,000 0 20 60 50 50 W▷◁Y
{W,Z} 40,000 0 20 60 40 100 W▷◁Z
{X,Y} 600 0 50 50 50 X▷◁Y
{X,Z} 80,000 0 50 100 40 100 X▷◁Z
{Y,Z} 2,400 0 50 40 100 Y▷◁Z

{W,X,Y} 1,000 334 20 50 50 50 (W▷◁X)▷◁Y
{W,X, Z} 133,600 334 20 50 100 40 100 (W▷◁X)▷◁Z
{W,Y,Z} 240,000 2,400 20 60 50 40 100 W▷◁(Y▷◁Z)
{X,Y,Z} 4,800 600 50 50 40 100 (X▷◁Y)▷◁Z

{W,X,Y,Z} 8,000 1,334 ((W▷◁X)▷◁Y)▷◁ Z

b) left-deep trees only.

Answer. Below is the dynamic programming table entries for left-deep trees:

1



Relation Subset Size Cost Va Vb Vc Vd Ve Best Plan
{W,X} 334 0 20 50 100 W▷◁X
{W,Y} 30,000 0 20 60 50 50 W▷◁Y
{W,Z} 40,000 0 20 60 40 100 W▷◁Z
{X,Y} 600 0 50 50 50 X▷◁Y
{X,Z} 80,000 0 50 100 40 100 X▷◁Z
{Y,Z} 2,400 0 50 40 100 Y▷◁Z

{W,X,Y} 1,000 334 20 50 50 50 (W▷◁X)▷◁Y
{W,X, Z} 133,600 334 20 50 100 40 100 (W▷◁X)▷◁Z
{W,Y,Z} 240,000 2,400 20 60 50 40 100 (Y▷◁Z)▷◁W
{X,Y,Z} 4,800 600 50 50 40 100 (X▷◁Y)▷◁Z

{W,X,Y,Z} 8,000 1,334 ((W▷◁X)▷◁Y)▷◁ Z

Discussion. In this particular example, the dynamic programming table entries for
the all-tree model and for the left-deep-tree model happen to be the same, except:

1. For the left-deep-tree model, the best plan must be a left-deep tree while the
best plan for the all-tree model may not be a left-deep tree. This difference
can be seen for the subset {W,Y,Z} in the above two tables.

2. For the subset {W,X,Y,Z}, the all-tree model needs to consider all 7 non-trivial
partitions of the subset, i.e., {(W,X), (Y,Z)}, {(W,Y), (X,Z)}, {(W,Z), (X,Y)},
{(W,Y,Z), (X)}, {(W,X,Z), (Y)}, {(W,X,Y), (Z)}, and {(W), (X,Y,Z)}, while
the left-deep-tree model only needs to consider the four partitions that can
make left-deep trees, i.e., {(W,Y,Z), (X)}, {(W,X,Z), (Y)}, {(W,X,Y), (Z)},
and {(X,Y,Z), (W)}, although for this particular example, as shown in the
above tables, the left-deep tree ((W▷◁X)▷◁Y)▷◁Z happens to give the best plan
not only for all left-deep trees but also for all trees.

2



2. Suppose that we have the following key values:

29, 5, 7, 17, 19, 31, 2, 23, 11, 3.

Construct B+-trees for these keys where the order of the B+-tree is

Solution.
Since the number of keys in each node can vary, there can be many B+trees that

can satisfy the given conditions (you do not have to use the insertion operation).
The following are possible solutions.

(a) Order 3

? ?

-2 3

? ? ?

-5 7 11

? ? ?

-17 19 23

? ?

29 31

�
��	

@
@@R

5

�
��	

@
@@R

29

��������)

PPPPPPPPq

17

(b) Order 5

? ? ?

-2 3 5

? ? ? ?

-7 11 17 19

? ? ?

- 23 29 31

���������9

B
BBN

XXXXXXXXXz

7 23

(c) Order 7

? ? ? ?

-2 3 5 7

? ? ? ? ? ?

11 17 19 23 29 31

�������)

PPPPPPPq

11

3



3. Discuss how to execute a deletion operation in an extensible hash table. What
are the advantages and disadvantages of restructing the table if its smaller size after
deletion allows for compression of certain blocks?

Solution. Below is the algorithm for deletion in extensible hash-table:

input: a tuple t with search key x
\\ h is the hash-function, H is the directory, i is the current hash-index.

1. m = the first i bits of h(x)
2. let the block with the address H[m] be B
3. IF t is in B THEN delete t from B ELSE return (“t not found”)
4. let j be the block index of B
5. WHILE B has a buddy block B′ mergeble with B, DO

move all tuples in B′ to B; free block B′

set the block index of B to j = j–1
mj−1 = the first j − 1 bits of mj

Let all H[mj−1
∗∗] point to B

6. IF the largest block index jmax is smaller than i, THEN
construct a new directory H0 of size 2jmax

let the hash index i = jmax

FOR each string m0 of jmax bits DO let H0[m0] = any H[m0
∗∗]

The advantage of merging mergeble blocks and restructuring the hash table is
that the process frees up space whenever possible, thus, has better memory utiliza-
tion. In particular, when the hash directory is stored in the main memory, reducing
the size of the hash directory can significantly improve main memory utilization.

On the other hand, this makes the deletion operation in extensible hash structure
less efficient:
(1) after the deletion, we need to check if the buddy block is mergeble, which costs

extra disk I/O’s;
(2) restructuring the entire hash table is very expensive; and
(3) in the worst cases, repeated merging/splitting of blocks due to repeated

deletions/insertions can cause repeatedly restructuring the hash directory, which
can significantly hurt the performance of the system.

4



4. Discuss the necessary changes to insertion, deletion, and lookup algorithms for
linear hash tables if the search keys are not unique

Solution. Following are the changes in the algorithms for linear hash table if the
search keys are not unique.

1. Insertion: If the search keys are unique, then before we insert, we need to
check if the key is already in the bucket. In case multiple copies of the say key are
allowed, we do not need to check the uniqueness when we insert.

2. Deletion: If search keys are unique, the deletion operation can return im-
mediately after it finds a tuple with that key and deletes the tuple. On the other
hand, if multiple tuples can have the same key, the deletion operation has to search
all blocks in the bucket and makes sure that all tuples with that key are deleted.

3. Lookup: Similar to the deletion operation, when multiple tuples are allowed
to have the same search key, the lookup opeation has to search all blocks in the
bucket to find all these tuples.

5



5. Suppose that we want to compute the set union of two relations S and R, where
S and R are both sets and each takes 1, 000 blocks. Suppose that the main memory
has M = 200 blocks.

(1) How many disk I/O’s do you need if you use the two-pass sort-based algorithm
discussed in class (and in the textbook)?

(2) Can you modify the two-pass sort-based algorithm to save some disk I/O’s?
(hint: use the idea of the hybrid algorithm as discussed in the hash-based algorithm).

Solution. (1) As given, we have B(S) = B(R) = 1, 000, and M = 200. Thus, the
memory conditionM = 200 ≥

√
B(S) +B(R) ≈ 45 is satisfied and we can apply the

two-pass sort-based algorithm. As given in class, the number of disk I/O’s needed
for the two-pass sort-based set union algorithm is 3(B(S) +B(R)) = 6, 000.

(2) In order to save some disk I/O’s, we can use the idea of hybrid algorithms. For
this, we keep a sublist in the main memory (as we discussed in class, keeping a single
sublist in the main memory maximizes the number of saved disk I/O’s). The most
interesting question is how we decide the size of the sublists. Suppose each sublist is
of x blocks, where x is to be decided later. Then we can use the following algorithm:

1. break relations R and S into sorted sublists of size x, and write all of them,
except the last sublist lS of S, back to disk;

2. read one block from each sublist of R and S in disk into main memory;
3. repeatedly, move the smallest tuple among all the sublists (including lS) to

the output block (if there are two such smallest tuples, then just move one
to the output block and disregard the other). If a block becomes empty, then
read the next block from the corresponding sublist in disk into main memory.

The number of disk I/O’s saved by this algorithm is 2x (for 1 read and 1 write for
the blocks in the sublist lS), compared to the standard two-pass sort-based algorithm
as given in (1). Thus, the total number of disk I/O’s spent by this algorithm is
6, 000− 2x.

To make this algorithm work, certain conditions must be satisfied. Because the
sublist size is x, each of the relations R and S has 1000/x sublists. Now since in the
2nd phase, we need in the main memory x blocks for the sublist lS , and one block
for each of the rest sublists of R and S, the main memory size must satisfy

M ≥ x+ 2 · 1000/x− 1.

For example, if we let x = 100, then x + 2 · 1000/x − 1 = 119 < M = 200, so we
have enough main memory space for this value of x, and the total number of disk
I/O’s spent by this hybrid algorithm is 6, 000− 2x = 5, 800.

To maximize the saved disk I/O’s, we solve the equation M = x+2 · 1000/x− 1,
which gives x = 190. · · ·. Thus, x = 190 is the largest integer that can satisfy the
condition above. For this value of x, the total number of disk I/O’s spent by the
hybrid algorithm is 6, 000− 2 · 190 = 5, 620.

6



Remark 1. In the above discussion, we did not count the block used as the
output block in main memory in phase 2 (note that in sort-based algorithm, we do
not need an additional input block). If we also count the output block, then the
condition becomes M ≥ x+ 2 · 1000/x, and the best vlue of x is 189.

Remark 2. It is acceptable if your solution is not the optimal but you tried
some meaningful values for x, such as x = 100 or x = 150. On the other hand, you
must present an analysis to verify that you have sufficient main memory space for
the value of x you chose.

7


