CSCE-608 Database Systems

Spring 2025

Instructor: Dr. Jianer Chen Office: PETR 428 Phone: 845-4259 Email: chen@cse.tamu.edu Office Hours: MW 1:30 pm-3:00 pm TA: Shahin John John Stella Office: PETR 445 Phone: (979) 575-5523 Email: ivin-98@tamu.edu Office Hours: TR 11:00 am-12:00 pm

Assignment #2 Solution

1. Using the database schema of movies given in the textbook (page 244)

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, proeC#),

Write the following queries in SQL:

a) Who were the male stars in Titanic?

Answer.

```
SELECT name
FROM MovieStar, StarsIn
WHERE name = starName AND gender = 'male' AND movieTitle = 'Titanic';
```

b) Which stars appeared in movies produced by MGM in 1995?

Answer.

```
SELECT starName
FROM Movies, StarsIn
WHERE title = movieTitle AND studioName = 'MGM' AND year = '1995';
```

c) Who is the president of MGM studios?

Answer.

```
SELECT MovieExec.name
FROM MovieExec, Studio
WHERE cert# = proeC# AND Studio.name = "MGM";
```

2. Using the grammar for TinySQL given in lecture 12, give the parse tree for the following query about relations R(a, b) and S(b, c):

SELECT a, c FROM R, S WHERE R.b = S.b

Answer. Below is the parse tree:

3. Some laws that hold for sets hold for bags; others do not. For each of the laws below that are true for sets, tell whether or not it is true for bags. Either give a proof showing the law is true for bags, or give a counterexample to show that the law is false:

a) $R \cup R = R$

Answer. False.

Counterexample: Consider $R = \{a\}$, where a is an element (a is a tuple if R is a relation). By the definition of bag union, we have

LHS =
$$R \cup R = \{a\} \cup \{a\} = \{a, a\}$$
 and **RHS** = $R = \{a\}$.

Thus, LHS \neq RHS.

b) $R \cap R = R$

Answer. True.

Proof: For any two bags A and B, by the definition of bag intersection, the number of copies of an element a in the intersection $A \cap B$ is equal to the smaller of the number of copies of a in A and the number of copies of a in B. Therefore, for the bag intersection $R \cap R$ of the same bag R, the number of copies of an element a in the intersection $R \cap R$ is the same as the number of copies of a in R. This is true for all all elements a. As a result, $R \cap R = R$.

c) $R - R = \emptyset$

Answer. True.

Proof: Similar to that for b). For any two bags S and T, by the definition of bag difference, the number of copies of an element a in the difference S - T is equal to max $\{0, s_a - t_a\}$, where s_a and t_a are the numbers of copies of a in S and T, respectively. Therefore, for the bag difference R - R of the same bag R, the number of copies of an element a in the difference R - R is always 0, i.e., element a is not in R - R. This is true for all all elements a. As a result, $R - R = \emptyset$.

d) $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$

Answer. True.

Proof: We will denote by $n_a(B)$ the number of copies of the element a in the bag B. Now fix an element a. Because of the symmetry, we can assume $n_a(S) \ge n_a(T)$.

By the definition of bag intersection, $n_a(S \cap T) = \min\{n_a(S), n_a(T)\} = n_a(T)$, here we have used the assumption $n_a(S) \ge n_a(T)$. Now by the definition of bag union, for LHS, we have $n_a(R \cup (S \cap T)) = n_a(R) + n_a(S \cap T) = n_a(R) + n_a(T)$.

For RHS, we have $n_a(R \cup S) = n_a(R) + n_a(S)$ and $n_a(R \cup T) = n_a(R) + n_a(T)$. Since $n_a(S) \ge n_a(T)$, we have $n_a(R \cup S) \ge n_a(R \cup T)$. Therefore,

$$n_a((R \cup S) \cap (R \cup T)) = \min\{n_a(R \cup S), n_a(R \cup T)\} = n_a(R \cup T) = n_a(R) + n_a(T).$$

Therefore, for any element a, the number of copies of a on LHS is equal to that on RHS. Since a is an arbitrary element, we conclude LHS = RHS.