
CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: 979) 575-9987
Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm–3:00 pm and by appointments

Assignment #7 Solutions

1. Let Q1, Q2, and Q3 be decision problems. Prove: if Q1 ≤p
m Q2 and Q2 ≤p

m Q3,
then Q1 ≤p

m Q3. You should explain why your reduction from Q1 to Q3 runs in time
polynomial of the length of the instances of Q1.

Proof. Since Q1 ≤p
m Q2 and Q2 ≤p

m Q3, by definition, there exist polynomial-time
algorithms A1 and A2 such that (1) for each x1, x1 is a yes-instance of Q1 if and
only if A1(x1) is a yes-instance of Q2; and (2) for each x2, x2 is a yes-instance of Q2

if and only if A2(x2) is a yes-instance of Q3. Let the running time of algorithm A1

on input x1 be bounded by p1(|x1|), where p1(|x1|) is a polynomial of |x1|, and let
the running time of algorithm A2 on input x2 be bounded by p2(|x2|), where p2(|x2|)
is a polynomial of |x2|.

Now consider the following algorithm A0: on input x1, A0 first calls the algorithm
A1 on x1 to produce x2 = A1(x1), then calls the algorithm A2 on x2 to produce
x3 = A2(x2) and makes x3 as its output. Therefore, we have A0(x1) = A2(A1(x1)).
By the properties we know for the algorithms A1 and A2, we have

x1 is a yes-instance of Q1 if and only if
x2 = A1(x1) is a yes-instance of Q2, which holds true if and only if

x3 = A2(x2) = A2(A1(x1)) = A0(x1) is a yes-instance of Q3.

Therefore, x1 is a yes-instance of Q1 if and only if A0(x1) is a yes-instance of Q3.
Now we consider the time complexity of the algorithm A0. On input x1, the

algorithm A1 runs in time≤ p1(|x1|) and produces x2 = A(x1). Since each step of the
algorithm A1 can print at most one character to its output, we have |x2| ≤ p1(|x1|).
On input x2, the algorithm A2 runs in time ≤ p2(|x2|). Therefore, the running time
of the algorithm A0 on input x1 is bounded by

t(|x1|) = p1(|x1|) + p2(|x2|) ≤ p1(|x1|) + p2(p1(|x1|)),

where p1(|x1|) + p2(p1(|x1|)) is a polynomial of |x1|. Thus, the algorithm A0 is a
polynomial-time algorithm, so it is a polynomial-time reduction from the problem
Q1 to the problem Q3. This completes the proof that Q1 ≤p

m Q3.

1

2. Prove: if an NP-hard prolem is solvable in polynomial time, then P = NP.

Proof. Suppose that Q2 is an NP-hard problem that can be solved in polynomial
time. Thus, there is an algorithm A2 that runs in time p2(n) and solves the problem
Q2, where p2(n) is a polynomial of n. We prove that under this assumption, P =
NP. Since we already know that P ⊆ NP, it suffices to prove that NP ⊆ P, i.e.,
to prove that every problem in NP is also in P.

Let Q1 be any problem in NP. Since Q2 is NP-hard, we have Q1 ≤p
m Q2,

i.e., there is a polynomial-time algorithm A1 that on input x1 produces an output
x2 = A1(x1) such that x1 is a yes-instance of Q1 if and only if x2 is a yes-instance
of Q2. Let the running time of algorithm A1 on input x1 be bounded by p1(|x1|),
where p1(|x1|) is a polynomial of |x1|. As we did in Question 1, since each step
of the algorithm A1 can print at most one character to its output, we have |x2| =
|A1(x1)| ≤ p1(|x1|).

Now consider the following algorithm A0: on input x1, A0 first calls the algorithm
A1 on x1 to produce x2 = A1(x1) in time p1(|x1|), then calls the algorithm A2 on
x2 to determine, in time p2(|x2|), if x2 is a yes-instance of Q2. The algorithm A0

returns “yes” if and only if the algorithm A2 on x2 returns “yes.”
Since A1 is a polynomial-time reduction from Q1 to Q2, x1 is a yes-instance of

Q1 if and only if x2 = A1(x1) is a yes-instance of Q2. Therefore, the algorithm A0

given above correctly determines if the given input x1 is a yes-instance of Q1, thus
solves the problem Q1. The running time of the algorithm A0 is bounded by

t(|x1|) = p1(|x1|) + p2(|x2|) ≤ p1(|x1|) + p2(p1(|x1|)),

which is a polynomial of the length |x1| of the input x1 to the algorithm A0. As a
result, the algorithm A0 is a polynomial-time algorithm that solves the problem Q1,
i.e., the problem Q1 is in P.

Since Q1 is an arbitrary problem in NP, the above proof shows that every
problem in NP is also in P, i.e., NP ⊆ P, which gives NP = P.

2

3. Using the fact that the independent set problem is NP-complete, prove that
the following problem is NP-complete:

Clique: Given a graph G and an integer k, is there a set C of k vertices
in G such that for every pair v and w of vertices in C, v and w are
adjacent in G?

Proof. To prove that the problem Clique is NP-complete, we need to prove:

(1) Clique is in NP, and (2) Clique is NP-hard.

We first prove that Clique is in NP. To prove this, we need to give an algorithm
V0 such that on input (x, y):

(1) if x is a yes-instance of Clique, then for some y0, V0(x, y0) returns “yes,”
(2) if x is a no-instance of Clique, then for all y, V0(x, y) returns “no,” and
(3) V0(x, y) runs in time polynomial in |x|.

Note that an instance of Clique is of the form (G, k), where G is a graph and
k is an integer. Consider the following algorithm:

V0(x, y)
1. if (x is not of the form (G, k)) return (‘no’);
\\ now x is of the form x = (G, k), where G is a graph and k is an integer
2. if (y is not a set of k distinct vertices in G) return (‘no’);
\\ now y is a set of k distinct vertices in the graph G
3. if (any two vertices in y are not adjacent in G) return (’no’);

4. return (‘yes’).

We show that the algorithm V0(x, y) satisfies the conditions (1)-(3) above.
(1) If x is a yes-instance of Clique, then x = (G, k), where G is a graph in which

there is a set C of k vertices such for any two vertices v and w in C, v and w are
adjacent in G. In this case, simply let y0 be the set C. Then on the input (x, y0),
where x = (G, k) and y0 = C, the algorithm V0 can pass through the tests in steps
1-3, and returns “yes” at step 4.

(2) if x is a no-instance of Clique, then for any y, either x is not in the valid
format (G, k) thus the algorithm V0(x, y) returns “no” at step 1, or y is not a set
of k vertices in the graph G thus the algorithm V0(x, y) returns “no” at step 2. If
the input (x, y) passes through the tests in steps 1-2, then x = (G, k) and y is a set
of k vertices in G. However, since x = (G, k) is a no-instance of Clique, there is
no set of k vertices in which all vertices are adjacent. In particular, there must be
a pair v and w of vertices in the set y such that v and w are not adjacent. Thus,
the algorithm on (x, y) will returns “no” at step 3. This shows that in this case, the
algorithm on (x, y) can never reach step 4, thus it always returns “no.”.

(3) Assume that graphs are given in their adjacency matrices. Thus, step 1 of
the algorithm runs in time O(|x|) to check if x is of the format (G, k). Step 2 simply
checks if y is a set of k distinct integers in {1, 2, ..., n}, where the number n of vertices
in G can be found when we examine the adjacency matrix of the graph G. Finally,
with the adjacency matrix of G, step 3 takes time O(k2) = O(n2). In conclusion,
the algorithm V0 runs in time polynomial of |x| on input (x, y).

3

This verifies that the algorithm V0 satisfies all the conditions (1)-(3) for the
problem Clique. By the definition, this proves that the problem Clique is in the
class NP.

Now we show that the problem Clique is NP-hard. For this, we pick the known
NP-hard problem independent set (IS) and show IS ≤p

m Clique. An instance of
the problem IS takes the form (G, k) and asks whether there is a set I of k vertices
in which no two are adjacent, while an instance of the problem Clique takes the
form (G′, k′) and asks whether there is a set C of k′ vertices in which all vertices are
adjacent in G′. It is quite to see that the two problems are somehow “complement”
each other.

Let G = (V,E) be any graph. We define the complement graph Gc of G as the
graph Gc = (V,E′) that has the same set V of vertices. On the other hand, for any
two vertices v and w in V , v and w are adjacent in Gc if and only if v and w are
not adjacent in G.

The polynomial-time reduction from IS to Clique is as follows: on an instance
(G, k) of IS, we construct the complement graph Gc of G, then output (Gc, k) as an
instance of Clique. This algorithm obviously runs in polynomial time.

We prove that (G, k) is a yes-instance of IS if and only if (Gc, k) is a yes-instance
of Clique.

If (G, k) is a yes-instance of IS, then there is a set I of k vertices in G in which
no two vertices are adjacent. By the structure of the complement graph Gc, for
any two vertices v and w in this same set I, the vertices v and w are adjacent in
the graph Gc. Thus, the set I makes a clique of k vertices in Gc and (Gc, k) is a
yes-instance of Clique.

For the other direction, suppose that (Gc, k) is a yes-instance of Clique, then
there is a set C of k vertices in Gc such that every two vertices in C are adjacent
in Gc. Again by the structure of the complement graph Gc, it implies that for the
same set C of vertices in G, no two vertices in C are adjacent in G. Thus, the set
C makes an independent set of k vertices in G and (G, k) is a yes-instance of IS.

This completes the proof that IS ≤p
m Clique. Since IS is NP-hard, this reduc-

tion shows that Clique is NP-hard.
Summarizing the above discussion, we conclude that the problem Clique is

NP-complete.

4

