
CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: 979) 575-9987
Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm–3:00 pm and by appointments

Assignment #6 Solutions

1. It is clear that if a graph G is not connected then G has no spanning tree.
(Slightly) modify Kruskal’s algorithm so that on an input graph G, the algorithm
either reports that G is not connected, or produces a minimum spanning tree for G.
Your algorithm should not call a subroutine that tests the connectivity of G. Do
not forget to give the complexity analysis of your algorithm.

Solution. A critical observation is that a tree of n vertices has exactly n− 1 edges.
Thus, in the algorithm of Kruskal, if we we count the number of edges added to
the output T , we can easily tell if T is a tree or not. In case T is a tree, T is a
minimum spanning tree. On the other hand, if T is not a tree, then the graph G is
not connected. Note that an edge is added to T only when Union is called.

The modified Kruskal’s algorithm is given as follows, where we use Nv and Ne to
record the number of vertices and the number of edges in the graph G, respectively.

Modified-Kruskal(G)
1. sort the edges of G in nodecreasing order in edge weights: e1, e2, . . ., em;
2. T = ∅; Nv = 0; Ne = 0;
3. for (each vertex v)

MakeSet(v); Nv = Nv + 1;
4. for (i = 1; i ≤ m; i++)

let ei = [vi, wi];
rv = Find(vi); rw = Find(wi);
if (rv ̸= rw)

Union(rv, rw); T = T ∪ {ei}; Ne = Ne + 1;
5. if (Ne ̸= Nv − 1)

return (’G is not connected’);

else return (T).

Since the algorithm is just Kruskal’s algorithm with minor changes, which does
not change the asymptotic complexity of the orginal Kruskal’s algorithm, we con-
clude that the Modified-Kruskal’s algorithm runs in time O(m log n).

1

2. A matching M is maximal if you cannot add edges to M to make a larger
matching (note that it is different from a maximum matching). Consider the bipar-
tite graph G = (U ∪ V,E), where

U = {u1, u2, u3, u4}, V = {v1, v2, v3, v4},
E = {[u1, v1], [u1, v2], [u1, v4], [u2, v1], [u2, v3], [u2, v4], [u3, v1], [u3, v3], [u4, v1], [u4, v3]}.

(a) Draw the graph G.
(b) Does G have a (non-maximum) maximal matching of size 1?, size 2? size 3?
(c) For each “yes” answer to the previous part, give a maximal matching of the

given size, and show an augmenting path with respect to that matching.

Solution.
(a) The graph G is drawn as follows.

nu1

nu2

nu3

nu4

nv1
nv2
nv3
nv4

PPPPPP
\
\
\
\
\
\
\

������

PPPPPP
c
c

c
c

cc

#
#
#
#

##

������

�
�
�
�
�
�
�

(b) The graph G has no size-1 maximal matching. To see this, note that a
maximal matching M1 of size 1 means a single edge e in M1 such that every other
edge in G shares a common end with e. This is not hard to verify that no such an
edge e exists in the graph G.

On the other hand, the graphG has size-2 maximal matchings and size-3 maximal
matchings, as given in (c), where the existence of augmenting paths shows that the
matchings are maximal but not maximum.

(c) The edge set M2 = {[u1, v1], [u2, v3]} makes a size-2 maximal matching. The
following is an augmenting path with respect to M2:

P = (v2, u1, v1, u2, v3, u4).

The edge set M3 = {[u1, v1], [u2, v4], [u3, v3]} makes a size-3 maximal matching.
The following is an augmenting path with respect to M3:

P = (u4, v3, u3, v1, u1, v2).

2

3. Consider the following Job Completion problem:

Given n workers and m jobs, such that each worker has a list of jobs
that he can do. Decide if there is an assignment such that every job gets
assigned to a worker who can do the job, assuming that each worker is
given at most one job.

Design an efficient algorithm for the problem. Analyze your algorithm.

Solution. This is a typical problem to which graph matching algorithms can be
applied. For an instance as described in the problem statement, we build a bipartite
graph G of n+m vertices, in which n vertices represent the n workers and the other
m vertices represent the m jobs. Add an edge between a worker and a job if the
job is in the list of the worker (i.e., if the worker can do the job). Now a matching
in G is a way to pair the workers and the jobs such that (1) if a worker is paired
with a job, then the worker can do the job; (2) no two workers are assigned to the
same job; and (3) no worker is assigned to more than one job. Thus, the problem
is actually asking if there is a matching in the graph G in which all job vertices get
matched.

The following algorithm implements this idea.

Job-Completion(W,J)
Input: a set W of n workers and a set J of m jobs, each worker has a list of jobs in J ;
Output: decide if there is way to assign the jobs to the worker, with at most one job

per worker, such that every job gets assigned to a distinct worker

1. construct a bipartite graph G = (W ∪ J,E), such that if a job j ∈ J is in the list
of a worker w ∈ W , then there is an edge in E between j and w;

2. call the maximum matching algorithm on the bipartite graph G to construct a
maximum matching M in G;

3. if (|M | = m)

return (M) \\this is a job assignment that makes all jobs get assigned

else return (“no assginemt can make all jobs assigned.”).

Define the length of the job list for a worker to be the number of jobs in the list.
Let L be the sum of lengths of job lists for all workers. It is not hard to see that the
length of an instance of the problem is equal to n+m+L, i.e., the instance consists
of n workers, m jobs, and the job lists for all workers. By the construction, the
graph G has n+m vertices and L edges, and can be constructed from the input in
time O(n+m+L) in step 1 of the algorithm. As we studied in class, the maximum
matching algorithm runs in time O(|V | · |E|) on a bipartite graph of |V | vertices and
|E| edges. Now for the graph G = (W ∪ J,E), we have |V | = |W ∪ J | = n+m, and
|E| = L. Therefore, step 2 of the algorithm runs in time O((n+m)L). In conlusion,
the above algorithm Job-Completion solves the given problem in time O((n+m)L),
where n is the number of workers, m is the number of jobs, and L is the sum of the
lengths of the job lists for the workers.

3

