CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: 979) 575-9987

Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm—3:00 pm and by appointments

Assignment #3 Solution

1. Based on Breadth-First-Search, write algorithms that solve the following prob-
lems, respectively:
(1) Given an undirected graph G, decide if G is connected.
(2) Given an undirected graph G, decide if G is a tree.
(3) Given an undirected graph G, decide if G is bipartite.
(4) Given an unweighted and undirected graph G and two vertices v and w in
G, either construct a shortest path from v to w in G, or report that there
is no path from v to w in G.

Solution. All problems can be solved by modifying the BFS algorithm.

(1) Test if a graph G is connected.

Suppose that we call BFS on any vertex v. If G is connected, then after BFS on
v, all vertices will become black. Otherwise, the vertices not reachable from v would
remain white. Thus, we just have to do a BFS plus a checking on the vertex colors.
The algorithm is given as follows, where steps 1-3 give the standard BFS (with an
arbitrary vertex s picked), and steps 4-5 check if there are still white vertices.

CONN(G) \\ Q is a queue
1. for (each vertex v) color[v] = white;
2. pick any vertex s; color[s] = gray; EnQueue(Q, s);
3. while (Q is not empty)

w = DeQueue(Q);

for (each edge [w, v])

if (color[v] == white)
color[v] = gray; EnQueue(Q, v);

color[w] = black;
4. for (each vertex v)

if (color[v] == white) return(”not connected”);

5. return(”connected”).

Steps 1-3 give the standard BFS, so take time O(m + n). Steps 4-5 obviously
take time O(n). Therefore, the algorithm CONN(G) runs in time O(m + n) and
tests the connectivity of the graph G.

(2) Test if a graph G is a tree.

If the graph G is a tree, then G is connected. We can use the idea for (1) to
test the connectivity of G. Under the condition that G is connected, if G is a tree,
then the BFS-tree, starting from any vertex s, is that tree. Therefore, if we find
any edge that does not belong to the BFS-tree, then the graph G is not a tree. The
algorithm is given below. We use the array dad[*] to record the parent of a vertex.
Step 3.1 creates a new edge in the BFS-tree, while in step 3.2, when the vertex v
is not white, then only if v is the parent of w then the edge [w,v] is an edge in the
BFS-tree. Again steps 4-5 check the connectivity of the graph G.

TREE(G) \\ Q is a queue
1. for (each vertex v) color[v] = white; dad[v] = NIL;
2. pick any vertex s; color[s] = gray; EnQueue(Q, s);
3. while (Q is not empty)
w = DeQueue(Q);
for (each edge [w, v])
3.1 if (color[v] == white)
color|[v] = gray; EnQueue(Q, v); dad[v] = w;
3.2 else if (v # dad[w])
return("not a tree”);
color[w] = black;
4. for (each vertex v)
if (color[v] == white) return("not a tree”);
5. return(”tree”).

Again steps 1-3 are small modifications of BF'S that do not change the asymptotic
complexity. So they take time O(m + n). Steps 4-5 take time O(n). Therefore, the
algorithm TREE(G) runs in time O(m + n) and tests if the graph G is a tree.

(3) Test if a graph G is bipartite.

We partition the vertices of graph G into two sets Vj and Vi by assigning them
a number 0 or 1, and check if all vertices can be consistently assigned. As we
explained in class, when we start BFS with a vertex s, we can simply assign 0 to
s becuase there is no enforced condition, yet. When we apply BFS and look at an
edge [w, v] where w already got an assigned number, then the number assigned to v
is uniquely determined: it must be opposite to that of w. This gives the following
algorithm testing bipartiteness of a graph, where the array RB is used to record the
number assigned to each vertex. The algorithm consists of a function BFS and a
main algorithm (note that a bipartite graph may not be connected).

In step 2 of the main algorithm, if we encounter a new white vertex v, then
we assign v with 0 and start a new BFS from v. Note that once a vertex becomes
non-white, it gets a number in RB[|. In particular, in step 2.1 of the function BFS
when we look at an edge [w,v] where the vertex v has not assigned a number yet
(vertex w is gray so it already got a number), we assign the number opposite to
that of w to the vertex v. On the other hand, if v already got a number, then step
2.2 checks if that number is consistent, i.e., if that number is opposite to that of w.
If not, then the graph is not bipartite (because all assigned numbers are enforced).

Finally, if all edges can pass the consistency test in the calls to BFS, then the graph
is bipartite, which is reported in step 3 of the main algorithm.

BFS(s) \\ Q is a queue
1. Q = 0; color[s] = gray; EnQueue(Q, s);
2. while (Q is not empty)
w = DeQueue(Q);
for (each edge [w, v])
2.1 if (color[v] == white)
color[v] = gray; EnQueue(Q, v); RB[v] = 1 — RB[w];
2.2 else if (RB[v] # 1 — RB[w]) return(”not bipartite”);
color[w] = black;

main BIPARTITE()
1. for (each vertex v) color[v] = white; RB[v] = -1;
2. for (each vertex v)
if (color[v] == white) RB[v] = 0; BFS(v);
3. return(”bipartite”).

Again the algorithm BIPARTITE is a simple modification of BFS that does not
change the complexity. Thus, the algorithm BIPARTITE takes time O(m + n).

(4) Shortest path from v to w.

As we explained in class, if we start BFS from the vertex v, then the BFS-tree
gives the shortest path from v to every vertex in the tree. Thus, we only need to
record the parent of each vertex in the BFS, as we did in (2). If the vertex w is
included in the BFS-tree, then by following the parent pointers, we will find the
shortest path from v to w (in the reversed order). If w is not included in that
BFS-tree, then there is no path from v to w in the graph G.

SHORTEST (v, w) \\ Q is a queue
1. for (each vertex x) color[x] = white; dad[x] = NIL;
2. Q = 0; color[v] = gray; EnQueue(Q, v);
3. while (Q is not empty)
x = DeQueue(Q);
for (each edge [x, y])

if (color[y] == white)
colorly] = gray; EnQueue(Q, y); dad[y] = x;
4. if (color[w] == white)

return(”no path from v to w”);
5. t = w; print(t);
6. while (dad[t] # NIL) t = dad[t]; print(t).
\\ the shortest path from v to w is printed backwards.

The algorithm is a simple modification of BFS without changing the complexity.
Thus, the algorithm SHORTEST takes time O(m + n).

2. Based on Depth-First-Search, write algorithms that solve the following problems,
respectively:
(1) Given an undirected graph G, decide if G is connected.
(2) Given an undirected graph G, decide if G is a tree.
(3) Given an undirected graph G, decide if G is bipartite.
(4) Given an undirected graph G, either construct a cycle in G or report that G
contains no cycle.

Solution. Again, all problems can be solved by modifying the DFS algorithm.

(1) Test if a graph G is connected.
Similar to BFS, if we call DFS on a vertex s and the graph is connected, then after
DFS(s), all vertices should become black. This is tested by the following algorithm.
DFS(v)
1. color[v] = gray;
2. for (each edge [v, w])
if (color[w] == white) DFS(w);
3. color[v] = black;
main CONN(G)
1. for (each vertex v) color[v] = white;
2. pick any vertex s; DFS(s);
3. for (each vertex v)
if (color[v] == white) return(”not connected”);
4. return(” connected”).

The algorithm is a simple modification of DFS. Thus, the algorithm CONN runs
in time O(n + m).

(2) Test if a graph G is a tree.

Again, if G is a tree, then G is the DFS-tree, starting from any vertex s. As we
did in BFS, we use array dad[| to record the parent of each vertex in the DFS-tree.
Whenever we find an edge not in the DFS-tree, we stop and report that G is not a
tree. The main algorithm also checks the connectivity after the call to DFS(s).

DFS(v)

1. color[v] = gray;

2. for (each edge [v, w])

if (color[w] == white) dad(w) = v; DFS(w);
else if (w # dad[v]) return(”not a tree”);

3. color[v] = black;

main TREE(G)
1. for (each vertex v) color[v] = white; dad[v] = NIL;
2. pick any vertex s; DFS(s);
3. for (each vertex v)
if (color[v] == white) return(”not a tree”);
4. return(”tree”).

The algorithm is a simple modification of DFS. Thus, the algorithm TREE runs
in time O(n + m).

(3) Test if a graph G is bipartite.
We apply DFS. When we start DFS on a vertex v, we assign v by 0. During
DFS, we assign 0 and 1 to each vertex and check the consistency on each edge.
DFS(v)
1. color[v] = gray;
2. for (each edge [v, w])
if (color[w] == white) RB[w] = 1 — RB[v]; DFS(w);
else if (RB[w] # 1 — RB[v]) return(”not bipartite”);
3. color[v] = black;

main BIPARTITE(G)
1. for (each vertex v) color[v] = white; RB[v] = -1;
2. for (each vertex v)
if (color[v] == white) RB[v] = 0; DFS(v);
3. return(”bipartite”).

The algorithm is a simple modification of DFS without changing complexity.
Thus, the algorithm BIPARTITE runs in time O(n + m).

(4) Find a cycle in a graph G.

When we call DFS, starting from any vertex v, if we find an edge [d, a] not in
the DFS-tree rooted at v, then we find a cycle. As we discussed in class, this kind
of edges are called back edges and must connect a descendant d to an ancestor a in
the DFS-tree. Thus, the tree path from a to d plus the edge [d, a] forms a cycle in
the graph. Note that the graph can be not connected but still contain cycles.

DFS(v)

1. color|[v] = gray;

2. for (each edge [v, w])

if (color[w] == white) dad[w] = v; DFS(w);
else if (w # dad[v]) \\ find a cycle
t = v; print(v);
while (¢t # dad[w]) t = dad][t]; print(t);
return;
3. color[v] = black;

main CYCLE(G)
1. for (each vertex v) color[v] = white; dad[v] = NIL;
2. for (each vertex v)
if (color[v] == white) DFS(v);
3. return(”no cycle”).

The algorithm is a simple modification of DFS without changing complexity.
Thus, the algorithm CYCLE runs in time O(n + m).

