CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Senior Grader: William Kang
Phone: 979) 575-9987
Email: rkdvlfah1018@tamu.edu
Questions: via phone and email
and by appointments

Assignment #2 Solution

1. Suppose that in the algorithm CountingSort (see lecture notes on Feb. 10), we rewrite the **for**-loop header in step 3 as

for (i=0; i<n; i++),</pre>

i.e., we scan the array A[0..n-1] forwards. Modify the algorithm CountingSort properly so that the algorithm still sorts the array A[0..n-1] stably.

Hint: Recompute the array C[0..k-1] so that for each h, C[h] is the number of integers in A[0..n-1] that are *strictly smaller* than h.

Solution. As hinted above, we compute the array C[0..k-1] so that for each h, C[h] is the number of integers in A[0..n-1] that are strictly smaller than h.

```
CountingSort(A[0..n-1])
1. for (h = 0; h < k; h++) C[h] = 0;
2. for (i = 0; i < n; i++) C[A[i]] = C[A[i]] + 1;
\\ new C[h] = the number of h in the array A[0..n-1]
3. prev = C[0]; C[0] = 0;
4. for (i = 1; i < k; i++)
      temp = C[i];
      C[i] = prev + C[i-1];
      prev = temp;
\\ in loop-i: C[i-1] = #values < i-1, prev = #values = i-1
5. for (i = 0; i < n; i++)
      B[C[A[i]]] = A[i];
      C[A[i]] = C[A[i]] + 1;</pre>
```

Explanations:

(1) after steps 1-2, for each h, C[h] is equal to the number of h's in A[0..n-1].

(2) For each $i, 1 \leq i \leq k-1$, when the *i*-th execution of the for-loop in step 4 starts, we keep the following conditions: C[i-1] is the number of values in A[0..n-1] that are strictly smaller than i-1, prev is the number of values in A[0..n-1] that are equal to i-1, and C[i] is the number of values in A[0..n-1] that are equal to i. This

is certainly true for i = 1 because of step 3. Step 4 first saves the number of values that are equal to i in *temp*, then sets C[i] = prev + C[i-1] so that C[i] now becomes the number of values in A[0..n-1] that are either strictly smaller than i - 1 or equal to i - 1, i.e., C[i] is the number of values in A[0..n-1] that are strictly smaller than i. The last line in step 4 assigns *prev* to *temp* so now *prev* becomes the number of values in A[0..n-1] that are equal to i. As a result, after the *i*-th execution of the for-loop in step 4, the values C[i] and *prev* are ready for the (i + 1)-st execution of the for-loop. **Remark:** note that implicitly here we have used induction on i to prove the correctness of step 4.

(3) By the analysis in (2), for each i, if A[i] = h, then C[h] = C[A[i]] is exactly the first index for the first value h in the output (note that the array index starts from 0). Thus, the second line in step 5 places the value A[i] in the correct position in the output array B[0..n-1]. The third line in step 5 simply moves the index C[h]to the next position for the next value h in the array A[0..n-1]. This also explains why this sorting algorithm is stable.

2. Assuming that you know that the elements of an array A[n] are integers between 0 and $n^3 - 1$. Develop a linear-time algorithm that sorts A[n].

Solution. Each integer x between 0 and $n^3 - 1$ can be written as $x = a_2n^2 + a_1n + a_0$, where a_2 , a_1 , and a_0 are integers between 0 and n - 1. Thus, if we treat each integer x between 0 and n - 1 as a base-n 3-digit number $x = (a_2a_1a_0)_n$, then we can apply RadixSort to sort the array A[n].

We discuss how we convert an integer x between 0 and $n^3 - 1$ into its base-n representation. Note that if we divide x by n, then the quotent is $x_1 = a_2n + a_1$ and the remainder is a_0 . Now if we divide x_1 by n then the quotent is $x_2 = a_2$ and the remainder is a_1 . The algorithm **Convert** below will do the conversion (using the operations in C++), and output the digit a_h, where h = 0, 1, 2, as given in the input:

int Convert(x, n, h)
1. x1 = x / n;
2. a_0 = x % n;
3. a_1 = x1 % n;
4. a_2 = x1 / n.
5. output(a_h).

Thus, in constant time we can convert the integer x into its 3-digit base-n representation and retrieve any specific digit in the representation. Now we are ready to present the algorithm.

CountingSort(A[n],h) \setminus Sort array A[n] using its h-th digit in base-n representation 1. for (h = 0; h < n; h++) C[h] = 0; 2. for (i = 0; i < n; i++)

```
k = Convert(A[i], n, h);
C[k] = C[k] + 1;
3. for (i = 0; i < n; i++) C[i] = C[i-1] + C[i];
4. for (i = n-1; i >= 0; i--)
k = Convert(A[i], n, h);
C[k] = C[k] - 1;
B[C[k]] = A[i].
5. \\ copy the output back to the array A[n]
for (i = 0; i < n; i++) A[i] = B[i];
main ()
for (h = 0; h < 3; i++) CountingSort(A[n],h).</pre>
```

The CountingSort algorithm consists of 5 for-loops, each takes time O(n). Thus, CountingSort takes time O(n). The main algorithm calls CountingSort three times, so it also takes time O(n).

3. Determine an LCS of (1, 0, 0, 1, 0, 1, 0, 1) and (0, 1, 0, 1, 1, 0, 1, 1, 0).

Solution. The sequence $\langle 1, 0, 0, 1, 1, 0 \rangle$ is an LCS for the two given sequences, as indicated below.

$$\begin{array}{l} \langle \underline{1}, \underline{0}, \underline{0}, \underline{1}, 0, \underline{1}, \underline{0}, 1 \rangle \\ \langle 0, \underline{1}, \underline{0}, 1, 1, \underline{0}, \underline{1}, \underline{1}, \underline{0} \rangle \end{array}$$

4. Develop an O(nm)-time algorithm that constructs the LCS for two sequences of lengths n and m, respectively, but uses only the array C[0..n, 0..m] without using the extra array B[0..n, 0..m].

Solution. The algorithm has been presented in class. We give some explanations here. As given in the slides of the lecture, when X[i] == Y[j], we will include the character X[i] in the LCS, while when $X[i] \neq Y[j]$, we will consider the LCS for the sequences X[1..i-1] and Y[j] and the LCS for the sequences X[1..i] and Y[j-1], and take the longer one. Thus, using the information given in X[i], Y[j], C[i-1, j], and C[i, j-1], we can completely determine how we should construct the LCS for X[1..n] and Y[1..m].

The algorithm for constructing the array C[0..n, 0..m] is the same as the one given in the lecture:

Dyn-LCS(X[1..n], Y[1..m])
1. for (i=0; i<=n; i++) C[i,0] = 0;
2. for (j=0; j<=m; j++) C[0,j] = 0;
3. for (i=1; i<=n; i++)</pre>

```
for (j=1; j<=m; j++)
if (X[i]==Y[j])
C[i,j] = C[i-1,j-1] + 1;
else if (C[i-1,j] > C[i,j-1])
C[i,j] = C[i-1,j];
else C[i,j] = C[i,j-1].
```

Once the array C[0..n, 0..m] is contructed, we use the following algorithm to print the LCS.

Becuase the algorithms consist of simple for-loops, and because it is also easy to compute the running time of each execution of the for-loops, we can easily derive that the above algorithm runs in time O(nm).