CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: 979) 575-9987

Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm—-3:00 pm and by appointments

Assignment #2 Solution

1. Suppose that in the algorithm CountingSort (see lecture notes on Feb. 10), we
rewrite the for-loop header in step 3 as

for (i=0; i<m; i++),
i.e., we scan the array A[0..n-1] forwards. Modify the algorithm CountingSort prop-
erly so that the algorithm still sorts the array A[0..n-1] stably.

Hint: Recompute the array C[0..k-1] so that for each h, C[h] is the number of
integers in A[0..n-1] that are strictly smaller than h.

Solution. As hinted above, we compute the array C[0..k-1] so that for each h, C[h]
is the number of integers in A[0..n-1] that are strictly smaller than h.

CountingSort(A[0..n-1])
1. for (b =0; h < k; h++) C[h] = 0;
2. for (4 = 0; i < n; i++) C[A[i]] = C[A[i]] + 1;
\\ new C[h] = the number of h in the array A[0..n-1]
3. prev = C[0]; C[0] = 0;
4. for (i =1; i < k; i++)

temp = C[i];

C[i] = prev + C[i-1];

prev = temp;
\\ in loop-i: C[i-1] = #values < i-1, prev = #values = i-1
5. for (i = 0; i < n; i++)

B[C[A[i]]] = A[i];

C[A[il] = C[A[il]l + 1;

Explanations:
(1) after steps 1-2, for each h, C[h] is equal to the number of A’s in A[0..n-1].
(2) For each i, 1 <i < k — 1, when the i-th execution of the for-loop in step 4
starts, we keep the following conditions: C[i — 1] is the number of values in A[0..n-1]
that are strictly smaller than ¢ — 1, prev is the number of values in A[0..n-1] that are
equal to i — 1, and C[i] is the number of values in A[0..n-1] that are equal to ¢. This

is certainly true for ¢ = 1 because of step 3. Step 4 first saves the number of values
that are equal to ¢ in temp, then sets C[i] = prev+C[i —1] so that C[i] now becomes
the number of values in A[0..n-1] that are either strictly smaller than ¢ — 1 or equal
to ¢ — 1, i.e., C[i] is the number of values in A[0..n-1] that are strictly smaller than
1. The last line in step 4 assigns prev to temp so now prev becomse the number of
values in A[0..n-1] that are equal to i. As a result, after the i-th execution of the
for-loop in step 4, the values C[i] and prev are ready for the (i + 1)-st execution
of the for-loop. Remark: note that implicitly here we have used induction on 7 to
prove the correctness of step 4.

(3) By the analysis in (2), for each i, if A[i] = h, then C[h] = C[A]i]] is exactly
the first index for the first value h in the output (note that the array index starts
from 0). Thus, the second line in step 5 places the value A[i] in the correct position
in the output array B[0..n-1]. The third line in step 5 simply moves the index CIh]
to the next position for the next value h in the array A[0..n-1]. This also explains
why this sorting algorithm is stable.

2. Assuming that you know that the elements of an array A[n| are integers between
0 and n3 — 1. Develop a linear-time algorithm that sorts A[n)].

Solution. Each integer between 0 and n?—1 can be written as z = asn?+ain+ao,
where ag, a1, and ag are integers between 0 and n — 1. Thus, if we treat each integer
x between 0 and n — 1 as a base-n 3-digit number z = (aga1ag),, then we can apply
RadixSort to sort the array Aln].

We discuss how we convert an integer 2 between 0 and n3 — 1 into its base-n
representation. Note that if we divide x by n, then the quotent is z1 = asn + a1
and the remainder is ag. Now if we divide x1 by n then the quotent is z9 = as and
the remainder is aj. The algorithm Convert below will do the conversion (using the
operations in C++), and output the digit a_h, where h = 0, 1, 2, as given in the
input:

int Convert(x, n, h)

1. x1 =x/ n;

2. a0 =xY% n;
3. al=x1Y% n;
4. a2 =x1/ n.
5. output(ah).

Thus, in constant time we can convert the integer x into its 3-digit base-n rep-
resentation and retrieve any specific digit in the representation. Now we are ready
to present the algorithm.

CountingSort(A[n],h)

\\ Sort array A[n] using its h-th digit in base-n representation
1. for (h =0; h < n; h++) C[h] = 0;

2. for (i =0; i < n; i++)

k = Convert(A[il, n, h);
Clk] = C[k] + 1;
for (i = 0; i < n; i++) C[i] = C[i-1] + C[il;
4., for (i =n-1; i >= 0; i--)
k = Convert(A[i], n, h);
Clk] = Clx] - 1;
B[C[k]] = A[i].
5. \\ copy the output back to the array A[n]
for (i = 0; i < n; i++) A[i] = B[il;

w

main ()
for (h = 0; h < 3; i++) CountingSort(A[n],h).

The CountingSort algorithm consists of 5 for-loops, each takes time O(n). Thus,
CountingSort takes time O(n). The main algorithm calls CountingSort three
times, so it also takes time O(n).

3. Determine an LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).

Solution. The sequence (1,0,0,1,1,0) is an LCS for the two given sequences, as
indicated below.

(1,0,0,1,0,1,0,1)
(0,1,0,1,1,0,1,1,0)

4. Develop an O(nm)-time algorithm that constructs the LCS for two sequences of
lengths n and m, respectively, but uses only the array C[0..n, 0..m| without using
the extra array B[0..n, 0..m].

Solution. The algorithm has been presented in class. We give some explanations
here. As given in the slides of the lecture, when X[i] == Y]j], we will include the
character X[i] in the LCS, while when X[i] # Y][j], we will consider the LCS for the
sequences X[1..i-1] and Y[j] and the LCS for the sequences X[1..i] and Y[j-1], and
take the longer one. Thus, using the information given in X[i], Y[j], Cl[i-1, j], and
Cl[i, j-1], we can completely determine how we should construct the LCS for X[1..n]
and Y[1..m].

The algorithm for constructing the array C[0..n, 0..m] is the same as the one
given in the lecture:

Dyn-LCS(X[1..n], Y[1..m])
1. for (i=0; i<=n; i++) C[i,0] =
2. for (j=0; j<=m; j++) C[0,j] =
3. for (i=1; i<=n; i++)

[N
o O

for (j=1; j<=m; j++)
if (X[il==Y[;1)
C[i,j] = C[i-1,j-11 + 1;
else if (C[i-1,j] > C[i,j-11)
cli,jl = C[i-1,j];
else C[i,jl = Cli,j-1].

Once the array C[0..n, 0..m] is contructed, we use the following algorithm to
print the LCS.

Construct-LCS(C[0..n,0..m])
\\the length k of the LCS is C[n,m]
1. i=mn; j=m; k= Cln,n];
2. while (i>0 & j>0)
if (X[il==Y[j1)
Alk]=X[i]; k k-1
i=i-1;,3=3-1;
else if (C[i-1,j] > C[i,j-11)
i=1i-1;

else j =3 - 1.
3. \\print the LCS
for (i = 1; i < k; i++) output(A[il).

Becuase the algorithms consist of simple for-loops, and because it is also easy to
compute the running time of each execution of the for-loops, we can easily derive
that the above algorithm runs in time O(nm).

