
CSCE 411-502 Design and Analysis of Algorithms

Spring 2025

Instructor: Dr. Jianer Chen Senior Grader: William Kang
Office: PETR 428 Phone: 979) 575-9987
Phone: (979) 845-4259 Email: rkdvlfah1018@tamu.edu
Email: chen@cse.tamu.edu Questions: via phone and email
Office Hours: MW 1:30 pm–3:00 pm and by appointments

Assignment #1 Solution

1. Write a recursive binary-search algorithm B-Search(A[0..n-1], x) that searches the
given number x in the array A[0..n-1] that is sorted in non-decreasing order. Give
a detailed analysis on the time complexity of your algorithm, including presenting
the recurrence relations, and the procedure that solves the recurrence relations.

Solution. The algorithm consists of a main program and a recursive function B-
Search, as follows.

B-Search(A,l,r,x)

1. if (l > r) return (false);

2. if (l = r) return (A[r] == x);

3. m = (l+r)/2;

4. if (x <= A[m]) return B-Search(A,l,m,x);

else return B-Search(A,m+1,r,x).

main(A[0..n-1], x)

return B-Search(A,0,n-1,x).

Time Complexity Analysis:
Assume that the recursive algorithm B-Search(A,l,r,x) runs in time T (h) on the
subarray A[l..r] of h = r − l + 1 elements. By steps 1-2, we have T (h) = O(1)
when h ≤ 1. For the case where h > 1, step 4 shows that the recurrence relation is
T (h) ≤ T (h/2) + O(1) (note that only one of the two recursive calls is executed in
step 4). This gives the following recurrence relation:

T (h) = T (h/2) +O(1) for h ≥ 2 and T (h) = O(1) for h ≤ 1.

To solve the recurrence relation, we follow the procedure given in the class. First,
we replace the recurrence relation by

T (h) ≤ T (h/2) + c for h ≥ 2 and T (h) ≤ c for h ≤ 1. (1)

1



By the recurrence relation, we also have T (h/2) ≤ T (h/22) + c. Thus, replacing
T (h/2) in the first inequality in (1) with T (h/22) + c, we get

T (h) ≤ T (h/22) + 2c. (2)

Similarly, by T (h/22) ≤ T (h/23) + c and (2), we get

T (h) ≤ T (h/23) + 3c.

Now it should be clear that for general k, we should have

T (h) ≤ T (h/2k) + kc. (3)

Letting k = log h in (3) gives

T (h) ≤ T (h/2log h) + c log h = T (1) + c log h ≤ c+ c log h = O(log h).

Since the main program calls on the array A[0..n-1] of size n, we conclude that the
above binary search algorithm runs in time O(log n) on input arrays of n elements.

2. Consider the following array:

A = 21 15 32 6 7 12 3 29 1 15

Apply the algorithm HeapSort to sort the array. Give the content of the array after:

(1) the execution of the algorithm MakeHeap(A[0..9]) ;
(2) the 1st, 4th, 7th, and 9th executions of the while-loop in the algorithm

SortHeap(A[0..9]).

(see the lecture notes for details of the algorithms.)

Solution.
(1) After MakeHeap(A[0..9]):

A = 32 29 21 15 15 12 3 6 1 7

(2)

(2.1) After the 1st execution of the while-loop in SortHeap(A[0..9]):

A = 29 15 21 7 15 12 3 6 1 32

heap tail t = 8.

(2.2) After the 4th execution of the while-loop in SortHeap(A[0..9]):

A = 15 7 12 3 6 1 15 21 29 32

heap tail t = 5.

2



(2.3) After the 7th execution of the while-loop in SortHeap(A[0..9]):

A = 6 3 1 7 12 15 15 21 29 32

heap tail t = 2.

(2.4) After the 9th execution of the while-loop in SortHeap(A[0..9]):

A = 1 3 6 7 12 15 15 21 29 32

heap tail t = 0.

3. Suppose that a heap is given by an array H[0..n-1] and an integer t (i.e., the tail
of the heap), where t < n-1. Write an algorithm Insert(H[0..n-1], t, x) that add a
new element x to the heap (and make the result a heap again). What is the time
complexity of your algorithm?

Solution. Basic idea: since t < n-1, the array element H[t+1] exists and is not
used by the heap. Thus, we can increase the heap size by 1 then place the new
element x in that position. Note that only the value of the new element x in the
new structure can violate the conditions of heap structures. Thus, we simply use
FixHeap to restore the heap structure. The algorithm is given as follows:

Insert(H[0..n-1],t,x)

1. t = t + 1;

2. H[t] = x;

3. FixHeap(H,t,t).

Steps 1-2 take time O(1). Step 3 calls FixHeap on a heap of size t + 1 ≤ n,
which, by the discussion in the class, takes time O(log(t+ 1)) = O(log n).

3


